Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (3): 285-291    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECT OF STRAIN RATE ON STRAIN INDUCED α'--MARTENSITE TRANSFORMATION AND MECHANICAL RESPONSE OF AUSTENITIC STAINLESS STEELS
LIU Wei 1;LI Zhibin2; WANG Xiang3;ZOU Hua1;WANG Lixin2
1 School of Mechanical; Electronic and Control Engineering; Beijing Jiaotong University; Beijing 100044
2 Taiyuan Iron and Steel (Group) Co.; Taiyuan 030003
3 Department of Materials Science and Engineering; McMaster University; Hamilton; ON.; L8S 4L7; Canada
Cite this article: 

LIU Wei LI Zhibin WANG Xiang ZOU Hua WANG Lixin. EFFECT OF STRAIN RATE ON STRAIN INDUCED α'--MARTENSITE TRANSFORMATION AND MECHANICAL RESPONSE OF AUSTENITIC STAINLESS STEELS. Acta Metall Sin, 2009, 45(3): 285-291.

Download:  PDF(1259KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tensile tests of cold rolled and annealed EN1.4318 (AISI301L) and EN1.4301 (AISI304) stainless steel sheet samples with 2 mm in thickness were performed at the strain rates of 5×10-4 s-1 (slow strain rate) and 2×10-2 s-1 (fast strain rate). The mechanism and volume fraction of strain induced α'--martensite transformation were investigated by using TEM, SEM and XRD. The amount of strain induced α'--martensite in EN1.4318 is much higher than that in EN1.4301 when both steels are deformed at the same strain rate. Adiabatic heating caused by the fast strain obviously decreases the α'--martensite transformation rate and work hardening rate in cold rolled EN1.4318 steel. The amount of α'--martensite and transformation rate for both steels are reduced during uniform deformation compared with those at slow strain rate, this behavior is more significant in cold rolled steels than that in annealed ones. For the more stable EN1.4301 with low saturated amount of α'--martensite (<0.3, volume fraction), rapidly plastic instability and tremendous reduction of uniform elongation are due to the small hardening effect at fast strain. In contrast, for EN1.4318 with low stacking fault energy and rather high saturated amount of α'--martensite, the tensile strength is significant decreased with increasing saturated amount of α'--martensite when deformation at fast strain. The strain rate sensitivity of EN1.4318 is much higher than that of EN1.4301.

Key words:  austenitic stainless steel      strain rate      α′--martensite transformation      mechanical response      plastic instability     
Received:  29 August 2008     
ZTFLH: 

TG113

 
Fund: 

Supported by National High Technology R&D Program of China (No.2008AA030702)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I3/285

[1] Lichtenfeld J A, Mataya M C, Tyne C J V. Metall Mater Trans, 2006; 37A: 147
[2] Talonen J, Nenonen P, Pape G, Hanninen H. Metall Mater Trans, 2005; 36A: 421
[3] Kumar A, Singha L K. Metall Mater Trans, 1989; 20A: 2857
[4] Talonen J, Hanninen H. Acta Mater, 2007; 55: 6108
[5] Byun T S, Hashimoto N, Farrell K. Acta Mater, 2004; 52: 3889
[6] Angel T. J Iron Steel Inst, 1954; 177: 165
[7] Nohara K, Ono Y, Ohasi N. J Iron Steel Inst, 1977; 63: 772
[8] Schramm R E, Reed R P. Metall Trans, 1975; 6A: 1345
[9] Liu W , Li Q, Jiao D Z, Zheng Y, Li G P. Acta Metall Sin, 2008; 44: 775
(刘伟, 李强, 焦德志, 郑毅, 李国平. 金属学报, 2008; 44: 775)

[10] Zhang H W, Hei Z K, Liu G, Lu J, Lu K. Acta Mater, 2003; 51: 1871
[11] Lee W S, Lin C F. Metall Mater Trans, 2002; 35A: 2801
[12] Byun T S. Acta Mater, 2003; 51: 3063
[13] Spencer K. PhD Thesis, McMaster University, Ontario, 2002
[14] Ferreira P J, Sande J B V, Amaral M. Metall Mater Trans, 2004; 35A: 3091
[15] Sinclair C W, Embury J D, Weatherly G C. Mater Sci Eng, 1999; A272: 90
[16] Han H N, Lee C G, Oh C S, Lee T H, Kim S J. Acta Mater, 2004; 52: 5203
[17] Olson G B, Cohen M. Metall Trans, 1982; 13A: 1907
[18] Olson G B, Azrin M. Metall Trans, 1978; 9A: 731
[19] Sinclair C W, Hoagland R G. Acta Mater, 2008; 56: 4160
[20] De A K, Speer J G, Matlock D K, Murdock D C, Mataya M C, Comstock R J. Metall Mater Trans, 2006; 37A: 1875
[21] Das A, Sivaprasad S, Ghosh M, Chakraborti P C, Tarafder S. Mater Sci Eng, 2008; A486: 283

[1] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[2] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[3] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[4] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[5] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[6] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[7] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[8] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[9] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[10] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[11] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[12] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[13] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[14] Xiangru GUO, Chaoyang SUN, Chunhui WANG, Lingyun QIAN, Fengxian LIU. Investigation of Strain Rate Effect by Three-Dimensional Discrete Dislocation Dynamics for fcc Single Crystal During Compression Process[J]. 金属学报, 2018, 54(9): 1322-1332.
[15] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
No Suggested Reading articles found!