Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (3): 275-279    DOI:
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTY OF COLD DRAWN HIGH STRENGTH 00Cr18Ni10N STAINLESS STEEL WIRE
HUANG Wenke1; 2; KONG Fanya1
1 Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
2 Graduate University of Chinese Academy of Sciences; Beijing 100049
Cite this article: 

HUANG Wenke KONG Fanya. MICROSTRUCTURE AND MECHANICAL PROPERTY OF COLD DRAWN HIGH STRENGTH 00Cr18Ni10N STAINLESS STEEL WIRE. Acta Metall Sin, 2009, 45(3): 275-279.

Download:  PDF(872KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

00Cr18Ni10N (mass fraction, %) stainless steel wires with different reductions of area were obtained through cold drawing. Tensile test, magnetic test and microstructure observation show that at the initial stage of deformation (ε≦40%), slipping and twinning are the main deformation mechanism, more amounts of twin lamella and dislocation cell microstruture appear, and the tensile strength changes from 600 to 1200 MPa. At the large deformation stage (ε>40%), strain induced martensites begin to take a part of deformation, the microstructure exhibits a fibrous band--like character, its substructure consists of dislocation cell and broken deformation twin with irregular shape, and the tensile strength is above 1200 MPa.

Key words:  stainless steel wire      cold drawing      twin lamella      deformation twin      strain induced martensite     
Received:  30 July 2008     
ZTFLH: 

TG142.7

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I3/275

[1] Tang G Y, Zhang J, Yan Y J, Zhou H H, FangW. J Mater Process Technol, 2003; 137: 96 [2] Skolyszewski A, Pa´cko M, Luksza J, Rumi´nski M. J Mater Process Technol, 2002; 125–126: 326 [3] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1 [4] Huang C X, Yang G, Gao Y L, Wu S D, Zhang Z F. Mater Sci Eng, 2008; A485: 643 [5] Topic M, Tait R B, Allen C. Int J Fatigue, 2007; 29: 656 [6] Goodchild D, Roberts W T, Wilson D V. Acta Metall, 1970; 18: 1137 [7] Fang X F, Dahl W. Mater Sci Eng, 1991; A141: 189 [8] Milad M, Zreiba N, Elhalouani F, Baradai C. J Mater Process Technol, 2008; 203: 80 [9] Nagy E, Mertinger V, Tranta F, S´olyom J. Mater Sci Eng, 2004; A378: 308 [10] Lebedev A A, Kosarchuk V V. Int J Plast, 2000; 16: 749 [11] Zhang S L, Li M J, Wang X B, Chen S B. J Chin Soc Corrosi Prot, 2007; 27: 124 (张述林, 李敏娇, 王晓波, 陈世波. 中国腐蚀与防护学报, 2007; 27: 124) [12] Tavares S S M, Fruchart D, Miraglia S. J Alloys Compd, 2000; 307: 311 [13] Mangonon P L, Thomas G. Metall Trans, 1970; 1: 1587 [14] Tsakiris V, Edmonds D V. Mater Sci Eng, 1999; A273–275: 430 [15] Xue Q, Liao X Z, Zhu Y T, Gray III G T. Mater Sci Eng, 2005; A410–411: 252 [16] Talonen J, H¨anninen H. Acta Mater, 2007; 55: 6108 [17] Spencer K. PhD Thesis, McMaster University, 2004
[1] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[2] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[3] Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel[J]. 金属学报, 2019, 55(4): 436-444.
[4] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[5] ZHOU Bo, SUI Manling. Generation and Interaction Mechanism of Tension Kink Band in AZ31 Magnesium Alloy[J]. 金属学报, 2019, 55(12): 1512-1518.
[6] Peibei JI, Lichu ZHOU, Xuefeng ZHOU, Feng FANG, Jianqing JIANG. Study on Anisotropic Mechanical Properties of Cold Drawn Pearlitic Steel Wire[J]. 金属学报, 2018, 54(4): 494-500.
[7] Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. 金属学报, 2018, 54(12): 1777-1784.
[8] Zhiwei SHAN, Boyu LIU. THE MECHANISM OF {101̅2} DEFORMATION TWINNING IN MAGNESIUM[J]. 金属学报, 2016, 52(10): 1267-1278.
[9] Lichu ZHOU,Xianjun HU,Chi MA,Xuefeng ZHOU,Jianqing JIANG,Feng FANG. EFFECT OF PEARLITIC LAMELLA ORIENTATION ON DEFORMATION OF PEARLITE STEEL WIRE DURING COLD DRAWING[J]. 金属学报, 2015, 51(8): 897-903.
[10] Xinning ZHANG,Yingdong QU,Rongde LI,Junhua YOU. MECHANISM OF CRACK NUCLEATION AND PROPA- GATION OF FERRITE DUCTILE IRON DURING IMPACT FRACTURE UNDER LOW TEMPERATURES[J]. 金属学报, 2015, 51(11): 1333-1340.
[11] GUO Pengcheng, QIAN Lihe, MENG Jiangying, ZHANG Fucheng. MONOTONIC TENSION AND TENSION-COMPRES- SION CYCLIC DEFORMATION BEHAVIORS OF HIGH MANGANESE AUSTENITIC TWIP STEEL[J]. 金属学报, 2014, 50(4): 415-422.
[12] ZHANG Zhibo LIU Zhenyu ZHANG Weina. EFFECT OF VC PARTICLES ON THE STRAIN HARDENING BEHAVIOR OF TWIP STEEL[J]. 金属学报, 2012, 48(9): 1067-1073.
[13] WU Zhiqiang, TANG Zhengyou, LI Huaying,ZHANG Haidong. EFFECT OF STRAIN RATE ON MICROSTRUCTURE EVOLUTION AND MECHANICAL BEHAVIOR OF A LOW C HIGH Mn TRIP/TWIP STEELS[J]. 金属学报, 2012, 48(5): 593-600.
[14] WEN Yuhua ZHANG Wanhu SI Haitao XIONG Renlong PENG Huabei. STUDY ON WORK HARDENING BEHAVIOUR AND MECHANISM OF HIGH SILICON AUSTENITIC HIGH MANGANESE STEEL[J]. 金属学报, 2012, 48(10): 1153-1159.
[15] QIN Xiaomei CHEN Liqing DI Hongshuang DENG Wei. EFFECT OF DEFORMATION TEMPERATURE ON TENSILE DEFORMATION MECHANISM OF Fe-23Mn-2Al-0.2C TWIP STEEL[J]. 金属学报, 2011, 47(9): 1117-1122.
No Suggested Reading articles found!