Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (8): 897-903    DOI: 10.11900/0412.1961.2014.00620
Current Issue | Archive | Adv Search |
EFFECT OF PEARLITIC LAMELLA ORIENTATION ON DEFORMATION OF PEARLITE STEEL WIRE DURING COLD DRAWING
Lichu ZHOU1,Xianjun HU2,Chi MA3,Xuefeng ZHOU1,Jianqing JIANG1,Feng FANG1()
1 School of Materials Science and Engineering, Southeast University, Nanjing 211189
2 Sha-Steel Iron and Steel Research Institute of Jiangsu Province, Zhangjiagang 215625
3 Sunnywell (China) New Material Technology Co. Ltd., Changzhou 213200
Cite this article: 

Lichu ZHOU,Xianjun HU,Chi MA,Xuefeng ZHOU,Jianqing JIANG,Feng FANG. EFFECT OF PEARLITIC LAMELLA ORIENTATION ON DEFORMATION OF PEARLITE STEEL WIRE DURING COLD DRAWING. Acta Metall Sin, 2015, 51(8): 897-903.

Download:  HTML  PDF(7101KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cold drawing pearlitic steel wires with ultra-high strength have important applications such as the automobile tire, springs rope and bridge cables. There have been many investigations which are paid attention to the hardening mechanisms of pearlitic steel wire, covering evolution of microstructure, texture and dislocation. In this work, effects of pearlitic lamella orientation on mechanical properties and deformation of pearlite steel wire in cold drawing were investigated by combining TEM, SEM and nano-indentor. The experimental results showed that pearlitic lamellae having low angle with drawing direction would be turned to parallel the drawing direction through a combined rotating process of pearlite colonies. The <110> fiber texture in the ferrite phase formed and the distribution of dislocations in ferrite was almost uniform. The deformation between cementite and ferrite was coordinated. Pearlitic lamellae having large angle with drawing direction would be bent and turned to parallel the drawing direction. It was difficult for the bent pearlite to deform because of the fragmentation of cementite and formation of dislocation cell in ferrite. After cold drawing process, the micro-hardness of straight pearlite was higher than that of bent pearlite. The result indicated that pearlitic lamellae having low angle with drawing direction have higher working-hardening rate in drawing.

Key words:  pearlitic steel wire      cold drawing      pearlitic lamella orientation      plastic deformation     
Fund: Supported by National Natural Science Foundation of China (Nos.51371050 and 51301038), Fund of Transformation of Scientific and Technological Achievements from Jiangsu Province (No.BA2014088) and Fund of Prospective Study and Research from Jiangsu Province (No.BY2014127-03)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00620     OR     https://www.ams.org.cn/EN/Y2015/V51/I8/897

Fig.1  SEM images of cross-sections in pearlitic steel wire with strains of 0 (a), 0.7 (b), 1.7 (c) and 2.5 (d)
Fig.2  STEM images of pearlite steel wire with straight lamella at strains of 0.25 (a), 0.5 (b), 1.1 (c) and 1.7 (d) (Insets in Fig.2b and d show the corresponding SAED patterns)
Fig.3  STEM images of pearlitic steel wire with bent lamella at strains of 0.25 (a), 0.5 (b), 1.1 (c) and 1.7 (d) (Inset in Fig.3c shows the corresponding SAED pattern)
Fig.4  SEM images of pearlite steel wire with straight (a) and bent (b) lamella at strain of 1.1 after nano-indentation
Fig.5  STEM image of pearlitic steel wire with true strain of 2.5
[1] Michael Z. Acta Mater, 2002; 50: 4431
[2] Li Y J, Choi P, Goto S, Borchers C, Raabe D, Kirchheim R. Acta Mater, 2012; 60: 4005
[3] Read H G, Reynolods J W T, Hono K, Tarui T. Scr Mater, 1997; 37: 1221
[4] Zhang X, Godfrey A, Huang X, Hansen N, Liu Q. Acta Mater, 2011; 59: 3422
[5] Li Y J, Raabe D, Herbig M, Choi P, Goto S, Kostka A, Yarita H, Borchers C, Kirchheim R. Phys Rev Lett, 2014; 113: 106104
[6] Zhang X, Godfrey A, Hansen N, Huang X. Acta Mater, 2013; 61: 4898
[7] Zhao T Z, Song H W, Zhang G L, Cheng M, Zhang S H. Acta Metall Sin, 2014; 50: 667 (赵天章, 宋鸿武, 张光亮, 程 明, 张士宏. 金属学报, 2014; 50: 667)
[8] Liu Y D, Jiang Q W, Zhao X, Zuo L, Liang Z D. Acta Metall Sin, 2002; 38: 1215 (刘沿东, 蒋奇武, 赵 骧, 左 良, 梁志德. 金属学报, 2002; 38: 1215)
[9] Fang F, Zhao Y F, Liu P P, Zhou L C, Hu X J, Zhou X F, Xie Z. Mater Sci Eng, 2014; A608: 11
[10] Wong J N, Chu M B, Sei J O, Soon-Ju K. Scr Mater, 1997; 37: 1221
[11] Fang F, Zhao Y F, Zhou L C, Hu X J, Xie Z, Jiang J Q. Mater Sci Eng, 2014; A618: 505
[12] Languillaume J, Kapelski G, Baudele B. Acta Mater, 2000; 42: 457
[13] Wang Y, Fang F, Wang L, Jiang J Q, Yang H. Trans Mater Heat Treat, 2010; 31(5): 92 (王 燕, 方 峰, 王 雷, 蒋建清, 杨 恒. 材料热处理学报, 2010; 31(5): 92)
[14] Fang F, Hu X J, Chen S H, Xie Z, Jiang J Q. Mater Sci Eng, 2012; A547: 51
[15] Guo N, Luan B F, Liu Q. Mater Des, 2013; 50: 285
[16] Zhang X, Godfrey A, Hansen N, Huang X, Liu W, Liu Q. Mater Charact, 2010; 61: 65
[17] Liu Y D, Jiang Q W, Wang G, Wang Y D, Liang T D. J Mater Sci Technol, 2005; 21: 357
[18] Hu X J,?Wang?L, Fang,?F,?Ma Z Q,?Xie Z H,?Jiang J Q. J Mater Sci,?2013;?48:?5528
[19] Fang F, Jiang J Q, Tan S Y, Ma A B. Surf Coat Technol, 2010; 204: 2381
[20] Fang F, Hu X J, Zhang B M, Xie Z H, Jiang J Q. Mater Sci Eng, 2013; A583: 78
[21] Zhou L C, Zhao Y F, Hu X J, Wang L, Li F, Fang F, Jiang J Q. Chin J Mater Res, 2014; 28: 615 (周立初, 赵宇飞, 胡显军, 王 雷, 李 凡, 方 峰, 蒋建清. 材料研究学报, 2014; 28: 615)
[22] Zhang B M, Zhao Y F, Hu X J, Ma H, Fang F, Jiang J Q. Trans Mater Heat Treat, 2014; 35(1):115 (张必明, 赵宇飞, 胡显军, 麻 晗, 方 峰, 蒋建清. 材料热处理学报, 2014; 35(1): 115)
[23] Tomota Y, Suzuki T, Kanie A, Shiota Y, Uno M, Moriai A, Minakawa N, Morii Y. Acta Mater, 2005; 53: 463
[24] Won J N, Chu M B. Mater Sci Eng,1995; A203: 278
[25] Zhang X, Godfrey A, Huang X, Hansen N, Huang X X. Acta Mater, 2013; 61: 4898
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[3] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[4] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[5] LIN Pengcheng, PANG Yuhua, SUN Qi, WANG Hangduo, LIU Dong, ZHANG Zhe. 3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size[J]. 金属学报, 2021, 57(5): 605-612.
[6] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[7] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[8] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[9] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[10] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
[11] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[12] Hanchen FENG,Xuegang MIN,Dasheng WEI,Lichu ZHOU,Shiyun CUI,Feng FANG. Effect of Low Temperature Annealing on Microstructure and Mechanical Properties of Ultra-Heavy Cold-DrawnPearlitic Steel Wires[J]. 金属学报, 2019, 55(5): 585-592.
[13] Zongwei JI,Song LU,Hui YU,Qingmiao HU,Levente Vitos,Rui YANG. First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys[J]. 金属学报, 2019, 55(5): 673-682.
[14] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[15] XIONG Jian,WEI Dean,LU Songjiang,KAN Qianhua,KANG Guozheng,ZHANG Xu. A Three-Dimensional Discrete Dislocation Dynamics Simulation on Micropillar Compression of Single Crystal Copper with Dislocation Density Gradient[J]. 金属学报, 2019, 55(11): 1477-1486.
No Suggested Reading articles found!