Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (2): 227-231    DOI:
论文 Current Issue | Archive | Adv Search |
SOLID SOLUTION BEHAVIOR OF Y2−x−yGdxEuyO3 NANOPOWDERS DURING PROCESS OF PREPARATION AND THEIR LUMINESCENCE PROPERTIES
SHEN Shifei 1;2; MA Weimin 1; WEN Lei 3; GUOYifen 2; WANG Huadong 2; YIN Kai 2
1. School of Materials Science and Engineering; Shenyang University of Chemical Technology; Shenyang 110142
2. Department of Materials Science and Engineering; Shenyang University; Shenyang 110044
3. Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences;Shenyang 110016
Cite this article: 

SHEN Shifei MA Weimin WEN Lei GUOYifen WANG Huadong YIN Ka. SOLID SOLUTION BEHAVIOR OF Y2−x−yGdxEuyO3 NANOPOWDERS DURING PROCESS OF PREPARATION AND THEIR LUMINESCENCE PROPERTIES. Acta Metall Sin, 2009, 45(2): 227-231.

Download:  PDF(956KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Phase transformation during preparation of Y2−x−yGdxEuyO3  (x + y ≤2) nanoparticles by citric acid chelating and influence of pH value on the powder morphology were studied by FTIR, XRD and SEM. The behavior of solid solution was analyzed through calculation of lattice parameters and unit cell volume of Y2−x−yGdxEuyO3 and its luminescence property was obtained. The results show that the appropriate condition to prepare cubic Y2−x−yGdxEuyO3  powder is that the pH value less than 3, calcining at 900℃ for 2 h. Y2−x−yGdxEuyO3  powders with spherical morphology and size of 90 nm can be prepared under the condition of pH=1 and adding a little amount of glycol (5%, volume fraction). Luminescence properties of the powders are affected by the ratio of Y, Gd and the content of Eu. The luminous intensity reaches the maximum value when the powder composition is Y0.2Gd1.65Eu0.15O3. Concentration quenching occurs when y is above 0.15 and then the emission intensity decreases.

Key words:  citric acid      Y2−x−yGdxEuyO3 nanopowder      solid solution      luminescence performance     
Received:  01 July 2008     
ZTFLH: 

O614.33

 
  TQ422

 
Fund: 

Supported by Natural Science Foundation of Liaoning Province (No.20062001) and Natural Science Key Projects of Liaoning Province (No.2005222009)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I2/227

[1] Fu Y P. J Mater Sci, 2007; 42: 5165 [2] Chien W C. J Cryst Growth, 2006; 290: 554 [3] Yin S, Shinozaki M, Sato T. J Lumin, 2007; 126: 427 [4] Park C S, Kwak M G, Choi S S, Song Y S, Hong S J, Han J I, Lee D Y. J Lumin, 2006; 118: 199 [5] Duclos S J, Greskovich C D, Lyons R J, Vartuli J S, Hoffman D M, Riedner R J, Lynch M J. Nucl Instrum Methods Phys Res, 2003; 505A: 68 [6] Zhai Y Q, Yao Z H, Ding S W, Qiu M D, Zhai J. Mater Lett, 2003; 57: 2901 [7] Sharma P K, Jilavi M H, Varadan V K, Schmidt H. J Phys Chem Solids, 2002; 63: 171 [8] Silver J, Withnall R, Lipman A, Ireland T G, Fern G R. J Lumin, 2007; 122–123: 562 [9] Sun L D, Liao C S, Yan C H. J Solid State Chem, 2003; 171: 304 [10] Chen J Y, Shi Y, Shi J L. J Inorg Mater, 2004; 19: 1260 (陈积阳, 施 鹰, 施剑林. 无机材料学报, 2004; 19: 1260) [11] Daniele S, Hubert–Pfalzgraf L G. Mater Lett, 2004; 58: 1989 [12] Lin C C, Lin K M, Li Y Y. J Lumin, 2007; 126: 795 [13] Zhang J Y, Zhang Z T, Tang Z T, Lin Y H, Zheng Z S. J Mater Process Technol, 2002; 121: 265 [14] Huang J F. Sol–Gel Principle and Technology. Beijing: Chemical Industry Press, 2005: 6 (黄剑锋. 溶胶--凝胶原理与技术. 北京: 化学工业出版社,2005: 6) [15] Yan B, Zhou L. J Alloys Compd, 2004; 372: 238
[1] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[2] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[3] CAO Tieshan, ZHAO Jinyi, CHENG Congqian, MENG Xianming, ZHAO Jie. Effect of Cold Deformation and Solid Solution Temperature on σ-phase Precipitation Behavior in HR3C Heat Resistant Steel[J]. 金属学报, 2020, 56(5): 673-682.
[4] Min ZHANG, Erlong MU, Xiaowei WANG, Ting HAN, Hailong LUO. Microstructure and Mechanical Property of the Welding Joint of TA1/Cu/ X65 Trimetallic Sheets[J]. 金属学报, 2018, 54(7): 1068-1076.
[5] Chuang DONG, Dandan DONG, Qing WANG. Chemical Units in Solid Solutions andAlloy Composition Design[J]. 金属学报, 2018, 54(2): 293-300.
[6] Yinhui ZHANG, Qiang FENG. Effects of W on Creep Behaviors of Novel Nb-Bearing Austenitic Heat-Resistant Cast Steels at 1000 ℃[J]. 金属学报, 2017, 53(9): 1025-1037.
[7] Hongwei ZHANG,Xuezhi QIN,Xiaowu LI,Lanzhang ZHOU. Incipient Melting Behavior and Its Influences on the Mechanical Properties of a Directionally Solidified Ni-Based Superalloy with High Boron Content[J]. 金属学报, 2017, 53(6): 684-694.
[8] Zongyue BI,Jun YANG,Haizhang LIU,Wanpeng ZHANG,Yaobin YANG,Lei TIAN,Xiaojiang HUANG. INVESTIGATION ON THE WELDING PROCESS AND MICROSTRUCTURE AND MECHANICAL PROPERTY OF BUTT JOINTS OF TA1/X65 CLAD PLATES[J]. 金属学报, 2016, 52(8): 1017-1024.
[9] Xiaohong YOU,Ganggang WANG,Jun WANG,Tao XU,Hongyu ZHANG,Hua WEI. EFFECT OF SOLID SOLUTION TREATMENT ONMICROSTRUCTURE AND MECHANICALPROPERTIES OF HOT-PRESS CoCrW ALLOYS[J]. 金属学报, 2016, 52(2): 161-167.
[10] LI Weijuan, ZHANG Hengyi, FU Hao, ZHANG Jianping, QI Xiangyu. INTERNAL FRICTION STUDY OF MECHANISM OF BAKE-HARDENING ON LOW CARBON STEEL[J]. 金属学报, 2015, 51(4): 385-392.
[11] YANG Fuqiang, SONG Renbo, SUN Ting, ZHANG Leifeng, ZHAO Chao, LIAO Baoxin. MICROSTRUCTURE AND MECHANICAL PROPER- TIES OF Fe-Mn-Al LIGHT-WEIGHT HIGH STRENGTH STEEL[J]. 金属学报, 2014, 50(8): 897-904.
[12] JIE Jinchuan, ZOU Chunming, WANG Hongwei, WEI Zunjie. MECHANICAL BEHAVIOR OF Al-20Mg ALLOY SOLIDIFIED UNDER HIGH PRESSURE[J]. 金属学报, 2014, 50(8): 971-978.
[13] SHANG Hailong, LIU Wenqing, DONG Yujun, ZHANG Anming, MA Bingyang, LI Geyang. 3D ATOM PROBE CHARACTERIZATION OF MICRO-STRUCTURE OF TiBx/Al SUPERSATURATED SOLID SOLUTE COMPOSITE FILMS[J]. 金属学报, 2014, 50(4): 395-399.
[14] MA Ping, WU Erdong, LI Wuhui, SUN Kai, CHEN Dongfeng. MICROSTRUCTURES AND HYDROGEN STORAGE PROPERTIES OF Ti0.7Zr0.3(Cr1-xVx)2 ALLOYS[J]. 金属学报, 2014, 50(4): 454-462.
[15] WANG Xiaona, HAN Lizhan, GU Jianfeng. PRECIPITATION KINETICS AND YIELD STRENGTH MODEL FOR NZ30K-Mg ALLOY[J]. 金属学报, 2014, 50(3): 355-360.
No Suggested Reading articles found!