STUDY ON HOT CORROSION RESISTANCE OF A NEW DIRECTIONAL SOLIDIFICATION Ni–BASED SUPERALLOY
NING Likui 1;2; ZHENG Zhi 2; TAN Yi 1; LIU Enze 2; TONG Jian 2; YU Yongsi 1; WANG Hua 3
1. School of Materials Science and Engineering; Dalian University of Technology; Dalian 116023
2. Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
3. AVIC Xi’an Aero–Engine Group Ltd.; Xi’an 710021
Cite this article:
NING Likui ZHENG Zhi TAN Yi LIU Enze TONG Jian YU Yongsi WANG Hua. STUDY ON HOT CORROSION RESISTANCE OF A NEW DIRECTIONAL SOLIDIFICATION Ni–BASED SUPERALLOY. Acta Metall Sin, 2009, 45(2): 161-166.
The hot corrosion resistance of a new directional solidification (DS) Ni–based super-alloy DZ68 was studied and compared with K438 alloy. The results indicate that the microstructure of DZ68 alloy is more uniform than K438 alloy after heat treatment. There are small size carbides in the microstructure of DZ68 alloy after heat treatment, but there are big size carbides and a lot (γ+γ') eutectic in the microstructure of K438 alloy. The hot corrosion of DZ68 alloy is uniform, and the corrosion products are mainly (Ni, Co)Cr2O4 and Al2O3. More (Ni, Co)Cr2O4 exists in outer corrosion layer and more Al2O3 exists in inner corrosion layer. For the K438 alloy the hot corrosion is not uniform, NiO is the mainly corrosion product in outer corrosion layer and CrS is the main corrosion product in inner corrosion layer. Moreover, the segregation of Ti can induce segregation of other elements in the two alloys, which leads to a severe local corrosion of alloys. Under the same expermental condition, the corrosion resistance of DZ68 alloy is a little better than that of K38 alloy.
[1] Shinata Y. Oxid Met, 1987; 27: 315
[2] Zhu R Z, Guo M J, Zuo Y. Oxid Met, 1987; 27: 253
[3] Santrelli R, Sivieri E, Reggiani R C. Mater Sci Eng, 1989;A120: 283
[4] Huang Q Y, Li H K. Superalloy. Beijing: Metallurgical Industry Press, 2000: 48
(黄乾尧, 李汉康. 高温合金. 北京: 冶金工业出版社, 2000: 48)
[5] Yang J X, Zheng Q, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2007; A465: 100
[6] Yeh A C, Sato A, Kobayashi T, Harada H. Mater Sci Eng, 2008; A490: 445
[7] Zhu Y X. ln: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Pennsylvania: TMS, 1992: 145
[8] Shi C , Lu D, Rong K. Forty Years of Chinese Superalloy . Beijing: Chinese Science and Technology Press, 1996: 8
(师昌绪, 陆 达, 荣 科. 中国高温合金四十年. 北京: 中国科学技术出版社, 1996: 8)
[9] Kearsey R M, Beddoes J C, Jones P, Au P. Intermetallics, 2004; 12: 903
[10] Kablov E N. Chemistry, 2005; 46: 155
(Каблов Е Н. Хuмuя, 2005; 46: 155)
[11] Li S Y, Guan D L. Hei Long Jiang Ye Jin, 2000; (1): 5
(李淑云, 关德林. 黑龙江冶金, 2000; (1): 5)