Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (2): 161-166    DOI:
论文 Current Issue | Archive | Adv Search |
STUDY ON HOT CORROSION RESISTANCE OF A NEW DIRECTIONAL SOLIDIFICATION Ni–BASED SUPERALLOY
NING Likui 1;2; ZHENG Zhi 2; TAN Yi 1; LIU Enze 2; TONG Jian 2; YU Yongsi 1; WANG Hua 3
1. School of Materials Science and Engineering; Dalian University of Technology; Dalian 116023
2. Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
3. AVIC Xi’an Aero–Engine Group Ltd.; Xi’an 710021
Cite this article: 

NING Likui ZHENG Zhi TAN Yi LIU Enze TONG Jian YU Yongsi WANG Hua. STUDY ON HOT CORROSION RESISTANCE OF A NEW DIRECTIONAL SOLIDIFICATION Ni–BASED SUPERALLOY. Acta Metall Sin, 2009, 45(2): 161-166.

Download:  PDF(2903KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hot corrosion resistance of a new directional solidification (DS) Ni–based super-alloy DZ68 was studied and compared with K438 alloy. The results indicate that the microstructure of DZ68 alloy is more uniform than K438 alloy after heat treatment. There are small size carbides in the microstructure of DZ68 alloy after heat treatment, but there are big size carbides and a lot (γ+γ') eutectic in the microstructure of K438 alloy. The hot corrosion of DZ68 alloy is uniform, and the corrosion products are mainly (Ni, Co)Cr2O4 and Al2O3. More (Ni, Co)Cr2O4 exists in outer corrosion layer and more Al2O3 exists in inner corrosion layer. For the K438 alloy the hot corrosion is not uniform, NiO is the mainly corrosion product in outer corrosion layer and CrS is the main corrosion product in inner corrosion layer. Moreover, the segregation of Ti can induce segregation of other elements in the two alloys, which leads to a severe local corrosion of alloys. Under the same expermental condition, the corrosion resistance of DZ68 alloy is a little better than that of K38 alloy.

Key words:  DZ68      hot corrosion      superalloy     
Received:  29 July 2008     
ZTFLH: 

TG146.1+5

 
  TG172.6+2

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I2/161

[1] Shinata Y. Oxid Met, 1987; 27: 315
[2] Zhu R Z, Guo M J, Zuo Y. Oxid Met, 1987; 27: 253
[3] Santrelli R, Sivieri E, Reggiani R C. Mater Sci Eng, 1989;A120: 283
[4] Huang Q Y, Li H K. Superalloy. Beijing: Metallurgical Industry Press, 2000: 48
(黄乾尧, 李汉康. 高温合金. 北京: 冶金工业出版社, 2000: 48)
[5] Yang J X, Zheng Q, Sun X F, Guan H R, Hu Z Q. Mater Sci Eng, 2007; A465: 100
[6] Yeh A C, Sato A, Kobayashi T, Harada H. Mater Sci Eng, 2008; A490: 445
[7] Zhu Y X. ln: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, Pennsylvania: TMS, 1992: 145
[8] Shi C , Lu D, Rong K. Forty Years of Chinese Superalloy . Beijing: Chinese Science and Technology Press, 1996: 8
(师昌绪, 陆 达, 荣 科. 中国高温合金四十年. 北京: 中国科学技术出版社, 1996: 8)
[9] Kearsey R M, Beddoes J C, Jones P, Au P. Intermetallics, 2004; 12: 903
[10] Kablov E N. Chemistry, 2005; 46: 155
(Каблов Е Н. Хuмuя, 2005; 46: 155)
[11] Li S Y, Guan D L. Hei Long Jiang Ye Jin, 2000; (1): 5
(李淑云, 关德林. 黑龙江冶金, 2000; (1): 5)

[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[7] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[8] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[9] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[10] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[11] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[12] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[13] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[14] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[15] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
No Suggested Reading articles found!