|
|
MICROSTRUCTURE EVOLUTION OF HYPEREUTECTOID STEELS DURING WARM DEFORMATION I. Formation of Equiaxial Ferrite and Effects of Al |
CHEN Wei 1; LI Longfei 1; YANG Wangyue 2; SUN Zuqing 1; HE Jianping 1 |
1. State Key Laboratory for Advanced Metals and Materials; University of Science and Technology Beijing; Beijing 100083
2. School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 |
|
Cite this article:
CHEN Wei LI Longfei YANG Wangyue SUN Zuqing HE Jianping. MICROSTRUCTURE EVOLUTION OF HYPEREUTECTOID STEELS DURING WARM DEFORMATION I. Formation of Equiaxial Ferrite and Effects of Al. Acta Metall Sin, 2009, 45(2): 151-155.
|
Abstract The microstructure evolution of hypereutectoid steels during warm deformation was investigated by uniaxial hot compression simulation experiment and by means of SEM, TEM and EBSD, especially for the formation of equiaxial ferrite grains and the effects of Al on the formation of equiaxial ferrite grains. The results indicate that the microstructure evolution of hypereutectoid steel during warm deformation involves the spheroidization of lamellar cementite, the equiaxial process of ferrite and the re–precipitation of cementite particles. At the beginning of warm deformation, lots of dislocations are introduced into ferrite, and subgrain boundaries are formed by dynamic recovery of ferrite. With the strain increasing, subgrains rotate due to the pinning effect of cementite particles, leading to the formation of high angle grain boundaries, i.e., the formation of equiaxial ferrite grains is actualized by the dynamic continuous recrystallization of ferrite. By the addition of Al, the coarsening of cementite is hindered, the sizes of cementite particles and ferrite grains are refined and the fraction of high angle grain boundary is increased.
|
Received: 06 June 2008
|
|
Fund: Supported by National Natural Science Foundation of China (No.50471092) and Doctoral Fund of Ministry of Education of China (No.20050008017) |
[1] Sherby O D,Walser B, Young C M, Cady E M. Scr Metall, 1975; 9: 569
[2] Sherby O D, Oyama T, Kum D W, Walser B, Wadsworth J. J Met, 1985; 37(6): 50
[3] Oyama T, Sherby O D, Wadsworth J, Walser B. Scr Metall , 1984; 18: 799
[4] Furuhara T, Mizoguchi T, Maki T. ISIJ Int, 2005; 45: 392
[5] Lesuer D R, Syn C K, Goldberg A, Wadsworth J, Sherby O D. JOM, 1993; 45(8): 40
[6] Syn C K, Lesuer D R, Goldberg A, Tsai H C, Sherby O D. Mater Sci Forum, 2007; 539–543: 4844
[7] Lesuer D R, Syn C K, Whittenberger J D, Sherby O D. Metall Mater Trans, 1999; 30A: 1559
[8] Frommeyer G, Jimenez J A. Metall Mater Trans, 2005; 36A: 295
[9] Tsuzaki K, Sato E, Furimoto S, Furuhara T, Maki T. Scr Mater, 1999; 40: 675
[10] Chattopadhyay S, Sellars C M. Acta Metall, 1982; 30: 157
[11] Robbins J L, Shepard O C, Sherby O D. J Iron Steel Inst, 1964; 202: 804
[12] Harrigan M J, Sherby O D. Mater Sci Eng, 1971; 7: 177
[13] Paqueton H, Pinau A. J Iron Steel Inst, 1971; 209: 991
[14] Kaspar R, Kapellner W, Lang C. Steel Res, 1988; 59: 492
[15] Chen W, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2008; 44: 626
(陈伟, 李龙飞, 杨王玥, 孙祖庆. 金属学报,2008; 44: 626)
[16] Chen W, Li L F, Yang W Y, Sun Z Q. Chin J Mater Res, 2008; 22: 374
(陈伟, 李龙飞, 杨王玥 , 孙祖庆. 材料研究学报, 2008; 22: 374)
[17] Chen G A, Yang W Y, Sun Z Q. Acta Metall Sin, 2007;43: 27
(陈国安, 杨王玥, 孙祖庆. 金属学报, 2007; 43: 27)
[18] Huang Q S, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2007; 43: 724
(黄青松, 李龙飞, 杨王玥, 孙祖庆. 金属学报, 2007; 43: 724)
[19] Bever M B, Holt D L, Tichener A L. Prog Mater Sci, 1973;17: 5
[20] Chattopadhyay S, Sellars C M. Metallography, 1977; 10:89
[21] Song R, Ponge D, Raabe D. Scr Mater, 2005; 52: 1075
[22] Song R, Ponge D, Raabe D, Kaspar R. Acta Mater, 2005;53: 845
[23] Humphreys F J. Acta Metall, 1979; 27: 1801 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|