Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (2): 151-155    DOI:
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION OF HYPEREUTECTOID STEELS DURING WARM DEFORMATION I. Formation of Equiaxial Ferrite and Effects of Al
CHEN Wei 1; LI Longfei 1; YANG Wangyue 2; SUN Zuqing 1; HE Jianping 1
1. State Key Laboratory for Advanced Metals and Materials; University of Science and Technology Beijing; Beijing 100083
2. School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

CHEN Wei LI Longfei YANG Wangyue SUN Zuqing HE Jianping. MICROSTRUCTURE EVOLUTION OF HYPEREUTECTOID STEELS DURING WARM DEFORMATION I. Formation of Equiaxial Ferrite and Effects of Al. Acta Metall Sin, 2009, 45(2): 151-155.

Download:  PDF(2631KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure evolution of hypereutectoid steels during warm deformation was investigated by uniaxial hot compression simulation experiment and by means of SEM, TEM and EBSD, especially for the formation of equiaxial ferrite grains and the effects of Al on the formation of equiaxial ferrite grains. The results indicate that the microstructure evolution of hypereutectoid steel during warm deformation involves the spheroidization of lamellar cementite, the equiaxial process of ferrite and the re–precipitation of cementite particles. At the beginning of warm deformation, lots of dislocations are introduced into ferrite, and subgrain boundaries are formed by dynamic recovery of ferrite. With the strain increasing, subgrains rotate due to the pinning effect of cementite particles, leading to the formation of high angle grain boundaries, i.e., the formation of equiaxial ferrite grains is actualized by the dynamic continuous recrystallization of ferrite. By the addition of Al, the coarsening of cementite is hindered, the sizes of cementite particles and ferrite grains are refined and the fraction of high angle grain boundary is increased.

Key words:  hypereuectoid steel      warm deformation      equiaxial ferrite      cementite      Al     
Received:  06 June 2008     
ZTFLH: 

TG142.1

 
Fund: 

Supported by National Natural Science Foundation of China (No.50471092) and Doctoral Fund of Ministry of Education of China (No.20050008017)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I2/151

[1] Sherby O D,Walser B, Young C M, Cady E M. Scr Metall, 1975; 9: 569
[2] Sherby O D, Oyama T, Kum D W, Walser B, Wadsworth J. J Met, 1985; 37(6): 50
[3] Oyama T, Sherby O D, Wadsworth J, Walser B. Scr Metall , 1984; 18: 799
[4] Furuhara T, Mizoguchi T, Maki T. ISIJ Int, 2005; 45: 392
[5] Lesuer D R, Syn C K, Goldberg A, Wadsworth J, Sherby O D. JOM, 1993; 45(8): 40
[6] Syn C K, Lesuer D R, Goldberg A, Tsai H C, Sherby O D. Mater Sci Forum, 2007; 539–543: 4844
[7] Lesuer D R, Syn C K, Whittenberger J D, Sherby O D. Metall Mater Trans, 1999; 30A: 1559
[8] Frommeyer G, Jimenez J A. Metall Mater Trans, 2005; 36A: 295
[9] Tsuzaki K, Sato E, Furimoto S, Furuhara T, Maki T. Scr Mater, 1999; 40: 675
[10] Chattopadhyay S, Sellars C M. Acta Metall, 1982; 30: 157
[11] Robbins J L, Shepard O C, Sherby O D. J Iron Steel Inst, 1964; 202: 804
[12] Harrigan M J, Sherby O D. Mater Sci Eng, 1971; 7: 177
[13] Paqueton H, Pinau A. J Iron Steel Inst, 1971; 209: 991
[14] Kaspar R, Kapellner W, Lang C. Steel Res, 1988; 59: 492
[15] Chen W, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2008; 44: 626
(陈伟, 李龙飞, 杨王玥, 孙祖庆. 金属学报,2008; 44: 626)
[16] Chen W, Li L F, Yang W Y, Sun Z Q. Chin J Mater Res, 2008; 22: 374
(陈伟, 李龙飞, 杨王玥 , 孙祖庆. 材料研究学报, 2008; 22: 374)

[17] Chen G A, Yang W Y, Sun Z Q. Acta Metall Sin, 2007;43: 27
(陈国安, 杨王玥, 孙祖庆. 金属学报, 2007; 43: 27)
[18] Huang Q S, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 2007; 43: 724

(黄青松, 李龙飞, 杨王玥, 孙祖庆. 金属学报, 2007; 43: 724)
[19] Bever M B, Holt D L, Tichener A L. Prog Mater Sci, 1973;17: 5
[20] Chattopadhyay S, Sellars C M. Metallography, 1977; 10:89
[21] Song R, Ponge D, Raabe D. Scr Mater, 2005; 52: 1075
[22] Song R, Ponge D, Raabe D, Kaspar R. Acta Mater, 2005;53: 845
[23] Humphreys F J. Acta Metall, 1979; 27: 1801

[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[6] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[7] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[8] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[9] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[10] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[11] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[12] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[13] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[14] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[15] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
No Suggested Reading articles found!