Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (12): 1451-1455    DOI:
论文 Current Issue | Archive | Adv Search |
EVOLUTION OF δ PHASE IN INCONEL 718 ALLOY DURING DELTA PROCESS
ZHANG Haiyan; ZHANG Shihong; CHENG Ming
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Download:  PDF(1498KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Superalloy Inconel 718 is an important material used for aero–engine high temperature turbine disks. The grain refining of Inconel 718 becomes critical because of the improvement in the quality and reliability of aero–engine. Inconel 718 turbine disks are manufactured by multi–stage hot deformation processes, in which the recrystallized grain grows up in next passes. Therefore, it is difficult to obtain a uniform and refined microstructure by recrystallization refining. The δ phase in Inconel 718 can control grain size through the strong pinning effect. Thus, the Delta process (DP) has been applied for the forging of Inconel 718. In this paper, for the DP of Inconel 718, the evolution of δ phase during isothermal compression deformation at temperature of 950℃ and strain rate of 0.005 s−1, was studied by using optical microscope (OM), scanning electron microscope (SEM) and quantitative X–ray diffraction (XRD) technique. The results show that spherical or rod–shaped δ phase particles in the interior of grains precipitated in the aging treatment disappear during the heating and holding time before deformation, and thcontent of δ phase decreases from 8.14% to 7.05%. Dissolution of δ phase occurs during the deformation, and the content of phase decreases from 7.05% to 5.14%. The spheroidization of plate–like or needl–like δ phase takes place due to the effect of deformation and dissolution breakages, and the plate–like or needle-like δ phase transferrs to sphrical or rod–shaped δ phase. In the centre with the largest strain, the plate–like or needle–like δ phase disappears and spherical or rod–shaped δ hase appears in the interior of grains and grain boundais.

Key words:  Inconel 718 alloy      Delta process       δ phase      deformation      spheroidization     
Received:  02 June 2009     
ZTFLH: 

TG146.1

 
  TG113.1

 
Fund: 

Supported by National Nature Science Foundation of China (No.50834008)

Corresponding Authors:  ZHANG Shihong     E-mail:  shzhang@imr.ac.cn

Cite this article: 

ZHANG Haiyan ZHANG Shihong CHENG Ming. EVOLUTION OF δ PHASE IN INCONEL 718 ALLOY DURING DELTA PROCESS. Acta Metall Sin, 2009, 45(12): 1451-1455.

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I12/1451

[1] Hiroaki Y, Takeshi H, Tomohisa H, Sachihiro I, Hideaki S. In: C´esar de S´a J M A, Santos A D eds., Proc 9th Int Conf on Numerical Methods in Industrial Processes, Portugal: Porto, 2007: 987 [2] Zhao Y F. Master Thesis, Beijing Research Institute of Mechanical & Electrical Technology, 1999 (赵耀峰. 机械工业部北京机电研究所硕士学位论文, 1999) [3] Ruiz C, Obabueki A, Gillespie K. In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds, Superalloys 1992, Warrendale, PA: TMS, 1992: 33 [4] Dix AW, Hyzak J M, Singh R . In: Antolovich S D, Stusrud R W, MacKay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds, Superalloys 1992, Warrendale, PA: TMS, 1992: 23 [5] Bhowal P R, Schirra J J. In: Loria E A ed, Superalloys 718, 625, 706 and Various Derivatives, Warrendale, PA: TMS, 2001: 193 [6] Lu H J, Yao C G, Zhang K F, Jia X C. Mater Mechanical Eng, 2003; 27(1): 15 (吕宏军, 姚草根, 张凯峰, 贾新朝. 机械工程材料, 2003; 27(1): 15) [7] Yuan H, Liu W C. Mater Sci Eng, 2005; A408: 281 [8] Wang Y, Zhen L, Shao W Z, Yang L, Zhang X M. J Alloys Compd, 2009; 44: 341 [9] Schafrik R E, Ward D D, Groh J R. In: Loria E A ed, Superalloys 718, 625, 706 and Various Derivatives, Warrendale, PA: TMS, 2001: 1 [10] Hu J P. PhD Dissertation, Steel Research Institute, Beijing, 1999 (胡建平. 钢铁研究总院博士学位论文, 北京, 1999) [11] Zhao D, Chaudhury P K. In: Loria E A ed, Superalloys 718, 625, 706 and Various Derivatives, Warrendale, PA: TMS, 1994: 303 [12] Thomas A, El–Wahabi M, Cabrera J M, Prado J M. J Mater Process Technol, 2006; 177: 469 [13] Sundararaman M, Mukhopadhyay P, Banerjee S. In: Loria E A ed, Superalloys 718, 625, 706 and Various Derivatives , Warrendale, PA: TMS, 1994: 419 [14] Desvall´ees Y, Bouzidi M, Bois F, Beaude N. In: Loria E A ed, Superalloys 718, 625, 706 and Various Derivatives, Warrendale, PA: TMS, 1994: 281 [15] Cai D Y, Zhang W H, Liu W C, Yao M, Sun G D, Chen Z L, Wang S G, Gao Y K. J Iron Steel Res, 2002; 14(6):61 (蔡大勇, 张伟红, 刘文昌, 姚枚, 孙贵东, 陈宗霖, 王少刚, 高玉魁. 钢铁研究学报, 2002, 14(6): 61) [16] Pan J S, Tong J M, Tian J M. Fundamentals of Material Science. Beijing: Tsinghua University Press, 2002: 473 (潘金生, 仝健民, 田健民. 材料科学基础. 北京: 清华大学出版社, 2002: 473)
[1] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[2] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[3] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[4] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[5] CAO Tieshan, ZHAO Jinyi, CHENG Congqian, MENG Xianming, ZHAO Jie. Effect of Cold Deformation and Solid Solution Temperature on σ-phase Precipitation Behavior in HR3C Heat Resistant Steel[J]. 金属学报, 2020, 56(5): 673-682.
[6] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[7] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[8] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[9] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
[10] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[11] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[12] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[13] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[14] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[15] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
No Suggested Reading articles found!