Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (10): 1199-1204    DOI:
论文 Current Issue | Archive | Adv Search |
MOLECULAR DYNAMICS SIMULATIONS OF NANOMACHINING MECHANISM AND THERMAL EFFECTS OF SINGLE CRYSTAL Cu
GUO Yongbo; LIANG Yingchun; CHEN Mingjun; LU Lihua
Precision Engineering Research Institute; Harbin Institute of Technology; Harbin 150001
Cite this article: 

GUO Yongbo LIANG Yingchun CHEN Mingjun LU Lihua. MOLECULAR DYNAMICS SIMULATIONS OF NANOMACHINING MECHANISM AND THERMAL EFFECTS OF SINGLE CRYSTAL Cu. Acta Metall Sin, 2009, 45(10): 1199-1204.

Download:  PDF(3275KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, nanomachining has received an increasing attention because of the remarkable advancement in sciences and technologies. In nanomachining process, the atomic interaction in surface and subsurface layers plays an important role. At such a small nanoscale, the traditional continuum representation method, such as finite element method, becomes questionable. This difficulty can be solved in general by molecular dynamics (MD). MD provides the necessary insight into nanomachining process and allows researching local material properties and behaviors in detail. Based on the large scale parallel algorithm, a new three–dimensional molecular dynamics simulation model was established for nanomachining of single crystal Cu. The interactions between workpiece atoms (Cu—Cu), copper and diamond atoms (Cu—C), and diamond atoms (C—C) were described by embedded atom method (EAM), Morse and Tersoff potentials, respectively. The temperature distribution and thermal effects during nanomachining were investigated. The chip formation and nanomachining mechanism were analyzed from the point of view of dislocation theory and thermal effects. The simulation results demonstrate that both the dislocation emission and chip pilep direction are along the h110i orientation. Temperature ditribution presents a roughly concentric shape and a steep temperature gradient lies in diamond tool, and the highest temperature is found in chip. The workpiece material becomes soft as the system temperature increases. Cutting speed and cutting edge radius have a significant effect on the system temperature distribution.

Key words:  single crystal Cu      nanomachining      molecular dynamics      temperature distribution      thermal soft effect      dislocation     
Received:  07 April 2009     
ZTFLH: 

TG146.1

 
Fund: 

Supported by National Natural Science Foundation of China (No.50675050) and Outstanding Youth Fund of Heilongjiang Province (No.JC200614) and Program for New Century Excellent Talents in University (No.06–0332)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I10/1199

[1] Liang H Y, Ni X G, Wang X X. Acta Metall Sin, 2001; 37: 833
(梁海弋, 倪向贵, 王秀喜. 金属学报, 2001; 37: 833)
[2] Wu H A, Wang X X, Liang H Y, Liu G Y. Acta Metall Sin, 2002; 38: 903
(吴恒安, 王秀喜, 梁海弋, 刘光勇. 金属学报, 2002; 38: 903)
[3] Inamura T, Takezawa N. CIRP Ann, 1992; 41: 121
[4] Fang T H, Weng C I. Nanotechnology, 2000; 11: 148
[5] Kim J D, Moon C H. J Mater Process Technol, 1996; 59: 309
[6] Liang Y C, Guo Y B, Chen M J. Tribology, 2008; 3: 282
(梁迎春, 郭永博, 陈明君. 摩擦学学报, 2008; 3: 282)
[7] Cheng K, Luo X, Ward R. Wear, 2003; 255: 1427
[8] Lin B, Wu H, Yu S Y, Xu Y S. Nanotech Precis Eng, 2004;2: 136
(林滨, 吴辉, 于思远, 徐燕申. 纳米技术与精密工程, 2004; 2: 136)
[9] Guo X G, Guo D M, Kang R K, Jin Z J. J Dalian Univ Technol, 2008; 48: 205
(郭晓光, 郭东明, 康仁科, 金洙吉. 大连理工大学学报, 2008; 48: 205)
[10] Ikawa N, Shimada S, Tanaka H. CIRP Ann, 1991; 40: 551
[11] Shimada S, Ikawa N, Tanaka H, Uchikoshi J. CIRP Ann, 1994; 43: 51
[12] Komanduri R, Chandrasekaran N, Raff L M. Wear, 2000; 242: 60
[13] Pei Q X, Lu C, Fang F Z, Wu H. Comput Mater Sci, 2006; 37: 434
[14] Maekawa K, Itoh A. Wear, 1995; 188: 115
[15] Cheong W C D, Zhang L C. Nanotechnology, 2000; 11: 173
[16] Tersoff J. Phys Rev, 1989; 39B: 5566
[17] Daw M S, Baskes M I. Phys Rev, 1984; 29B: 6443
[18] Ye Y, Biswas R, Morris J R, Bastawros A, Chandra A. Nanotechnology, 2003; 14: 390
[19] Fuente O R, Zimmerman J A, Gonz´alez M A, Figuera J, Hamilton J C, Pai W, Rojo J M. Phys Rev Lett, 2002; 88: 036101

[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[4] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[5] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[6] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[7] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[8] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[9] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[10] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[11] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[12] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[13] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[14] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[15] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
No Suggested Reading articles found!