Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (10): 1179-1184    DOI:
论文 Current Issue | Archive | Adv Search |
A CONSTITUTIVE MODEL FOR SHAPE MEMORY ALLOY IN PURE SHEAR STATE
ZHOU Bo 1; 3; LIU Yanju2; LENG Jinsong3
1. College of Aerospace and Civil Engineering; Harbin Engineering University; Harbin 150001
2. Department of Aerospace Science and Mechanics; Harbin Institute of Technology; Harbin 150001
3. Center for Composite Materials and Structures; Harbin Institute of Technology; Harbin 150080
Cite this article: 

ZHOU Bo LIU Yanju LENG Jinsong. A CONSTITUTIVE MODEL FOR SHAPE MEMORY ALLOY IN PURE SHEAR STATE. Acta Metall Sin, 2009, 45(10): 1179-1184.

Download:  PDF(436KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is of engineering interest to establish a constitutive model which includes the equations describing the phase transformation and mechanical behaviors of shape memory alloys (SMA) in pure shear state. In this study, such a shape memory evolution equation is established using the shape memory factor and Brinson’s relationship of phase transformation critical stress and temperature. A mechanical constitutive equation is also developed from 3D micro–mechanical constitutive equation based on the assumption that SMA is isotropic material to express the mechanical behaviors of SMA in pure shear state. All material constants in the shape memory evolution equation and mechanical constitutive equation can be determined through macroscopic experiments, so that they are moe easily sed in practical applications. Numerical simulation results show that this shape memory evolution equation cold simulate truly the processes of phase transformations in austenite, twinned and detwinned martensites, and the mechanical constitutive equation could predict reasonably the mechanical behaviors of SMA in pure shear state.

Key words:  shape memory alloy      pure shear state      shape memory evolution equation      mechanical constitutive equation     
Received:  10 March 2009     
ZTFLH: 

TG139

 
Fund: 

Supported by National Natural Science Foundation of China (No.95505010), National High Technology Research and Development Program of China (No.2006AA03Z109), China Postdoctoral Science Foundation (No.20080430933), and Harbin Talent Foundation of Scientific and Technical Innovation (No.RC2009QN017046)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I10/1179

[1] Yang D Z. Intelligent Materials and System. Tianjing: Tianjing University Press, 2000: 104
(杨大智. 智能材料与智能系统. 天津: 天津大学出版社, 2000: 104)
[2] Tanaka K. Res Mech, 1986; 18: 251
[3] Liang C, Rogers C A. J Int Mater Syst Struct, 1990; 1: 207
[4] Boyd J G, Lagoudas D C. J Int Mater Syst Struct, 1994; 5: 333
[5] Sun Q P, Hwang K C. J Mech Phys Solids, 1993; 41: 1
[6] Brinson L C. J Int Mater Syst Struct, 1993; 4: 229
[7] Peng X, Yang Y, Huang S. Int J Solids Struct, 2001; 38: 6925
[8] Zhu Y G, Lu H X, Yang D Z. Chin J Mater Res, 2001; 15: 263
(朱yi国, 吕和祥, 杨大智. 材料研究学报, 2001; 15: 263)
[9] Brocca M, Brinson L C, Bazant Z P. J Mech Phys Solids, 2002; 50: 1051
[10] Li H T, Peng X H, Huang S L. Acta Mech Solida Sin, 2004; 25: 58
(李海涛, 彭向和, 黄尚廉. 固体力学学报, 2004; 25: 58)
[11] Guo Y B, Liu F P, Zai X Y, Tang Z P, Yu J L. Explos Shock Waves, 2003; 23: 105
(郭扬波, 刘方平, 载翔宇, 唐志平, 虞吉林. 爆炸与冲击, 2003; 23: 105)
[12] Zhou B, Yoon S H. Smart Mater Struct, 2006; 15: 1967
[13] Zhou B, Wang Z Q, Liang W Y. Acta Metall Sin, 2006;42: 919
(周博, 王振清, 梁文彦. 金属学报, 2006; 42: 919)
[14] Xiong K, Tao B Q, Yao E T. Acta Aeronaut Astronaut Sin, 2001; 22: 379
(熊克, 陶宝祺, 姚恩涛. 航空学报, 2001; 22: 379)
[15] Xiong K, Shen W G. Chin J Mech Eng, 2003; 39(12): 123
(熊克, 沈文罡. 机械工程学报, 2003; 39(12): 123)
[16] Keefe A C, Carman G P. Smart Mater Struct, 2000; 9:665
[17] Ou G B, Zhu J M. Material Mechanics. Harbin: Harbin Engineering University Press, 1997: 52
(欧贵宝, 朱加铭. 材料力学. 哈尔滨: 哈尔滨工程大学出版社, 1997: 52)

[1] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[2] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[3] ZHANG Xin, CUI Bo, SUN Bin, ZHAO Xu, ZHANG Xin, LIU Qingsuo, DONG Zhizhong. Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy[J]. 金属学报, 2022, 58(8): 1065-1071.
[4] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Lüders-Like Deformation and Stress Transfer Behavior in an In Situ NiTi-NbTi Composite[J]. 金属学报, 2021, 57(7): 921-927.
[5] YE Junjie, HE Zhirong, ZHANG Kungang, DU Yuqing. Effect of Ageing on Microsturcture, Tensile Properties, and Shape Memory Behaviors of Ti-50.8Ni-0.1Zr Shape Memory Alloy[J]. 金属学报, 2021, 57(6): 717-724.
[6] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[7] XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. 金属学报, 2021, 57(1): 29-41.
[8] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[9] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
[10] Zhirong HE, Peize WU, Kangkai LIU, Hui FENG, Yuqing DU, Rongyao JI. Microstructure, Phase Transformation and Shape Memory Behavior of Chilled Ti-47Ni Alloy Ribbons[J]. 金属学报, 2018, 54(8): 1157-1164.
[11] Jing BAI,Ze LI,Zhen WAN,Xiang ZHAO. A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys[J]. 金属学报, 2017, 53(1): 83-89.
[12] Zhe LI,Chen XU,Kun XU,Hao WANG,Yuanlei ZHANG,Chao JING. STUDY OF MARTENSITIC TRANSFORMATION AND STRAIN BEHAVIOR IN Ni50-xCoxMn39Sn11 (x=0, 2, 4, 6) HEUSLER ALLOYS[J]. 金属学报, 2015, 51(8): 1010-1016.
[13] ZHANG Chengyan, SONG Fan, WANG Shanling, PENG Huabei, WEN Yuhua. EFFECT MECHANISM OF Mn CONTENTS ON SHAPE MEMORY OF Fe-Mn-Si-Cr-Ni ALLOYS[J]. 金属学报, 2015, 51(2): 201-208.
[14] CHEN Feng, SU Dexi, TONG Yunxiang, NIU Liqun,WANG Haibo, LI Li. MICROSTRUCTURE AND PHASE TRANSFORMATION OF Ni43Co7Mn41Sn9 HIGH TEMPERATURE SHAPE MEMORY ALLOY RIBBON[J]. 金属学报, 2013, 49(8): 976-980.
[15] LIU Qinghua,HUANG Yujin,LIU Jian,HU Qiaodan,LI Jianguo . MICROSTRUCTURE AND CRYSTAL ORIENTATION OF THE STEADY GROWTH ZONE IN THE DIRECTION ALLY SOLIDIFIED Ni-Fe-Ga-Co MAGNETIC SHAPE MEMORY ALLOYS[J]. 金属学报, 2013, 29(4): 391-398.
No Suggested Reading articles found!