Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (1): 107-112    DOI:
论文 Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF WELD FORMATION IN LASER+GMAW HYBRID WELDING III. Treatment of Pulsed Arc Action and Improvement of Heat Source Modes
XU Guoxiang1;WU Chuansong1;QIN Guoliang2; WANG Xuyou2;LIN Shangyang2
1 Institute for Materials Joining; Shandong University; Jinan 250061 2 Harbin Welding Institute; China Academy of Machinery Science & Technology; Harbin 150080
Cite this article: 

XU Guoxiang WU Chuansong QIN Guoliang WANG Xuyou LIN Shangyang. NUMERICAL SIMULATION OF WELD FORMATION IN LASER+GMAW HYBRID WELDING III. Treatment of Pulsed Arc Action and Improvement of Heat Source Modes. Acta Metall Sin, 2009, 45(1): 107-112.

Download:  PDF(854KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Considering the thermal action characteristics of pulsed arc in laser+pulsed GMAW (gas metal arc welding) hybrid welding, the arc heat flux is divided into two double-elliptic distribution modes with different parameters corresponding to pulse current duration and base current duration. Meanwhile, the thermal conductivity at the weldment surface is appropriately lowered to take account of intermittent action of pulse and base current indirectly. Based on the level of averaged welding current, the distributed region for double-ellipsoid of droplets heat content is determined, and the action location of laser heat input is taken into consideration. The previous heat source modes have been improved through dealing with the abovementioned aspects, and two new kinds of adaptive combined volumetric heat source modes are developed. The weld geometry and dimensions are numerically simulated under different conditions in hybrid welding process by using the improved heat source modes. The predicted weld penetration depth, width and fusion line locus all agree well with the experimental results. Thus, numerical simulation accuracy for hybrid welding has been greatly improved.

Key words:  hybrid welding      pulsed GMAW      weld formation      combined volumetric heat source mode      numerical simulation      fusion line locus     
Received:  02 June 2008     
ZTFLH: 

TG407

 
Fund: 

Supported by National Key Technologies R&D Program of China (No.2006BAF04B10)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I1/107

[1] Matsuyama K. In: Chinese Mechanical Engineering Society, ed., Proc Int Forum on Welding Technology in Automobile Industry, Beijing: Chinese Mechanical Engineering Society, 2003: 81
(松田健一. 见: 中国机械工程学会主编, 汽车焊接国际论坛论文集, 北京: 中国机械工程学会, 2003: 81)

[2] Shi S, Howse D. In: Chinese Mechanical Engineering Society, ed., Proc Int Forum on Welding Technology in Shipping Industry, Beijing: Chinese Mechanical Engineering Society, 2007: 41
(Shi S, Howse D. 见: 中国机械工程学会主编, 造船焊接国际论坛论文集, 北京: 中国机械工程学会, 2007: 41)

[3] Bagger C, Olsen F O. J Laser Appl, 2005; 17: 2
[4] Mahrle A, Beyer E. J Laser Appl, 2006; 18: 169
[5] Cho M H, Lim Y C, Farson D F. Weld J, 2006; 85: 271s
[6] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2008; 44: 478
(胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2008; 44: 478)

[7] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2008; 44: 641
(胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2008; 44: 641)

[8] Yin S Y. Basis of Gas–Shielded Welding Processes. Beijing: China Machine Press, 2007: 174
(殷树言. 气体保护焊工艺基础. 北京: 机械工业出版社, 2007: 174)

[9] He D F. Introduction to Welding and Joining Engineering. Shanghai: Shanghai Jiaotong University Press, 2002: 115
(何德浮. 焊接与连接工程概论. 上海: 上海交通大学出版社, 2002: 115)

[10] Shi Y W. China Materials Engineering Canon. Vol.22, Beijing: Chemical Industry Press, 2005: 53
(史耀武. 材料工程大典. 第22卷, 北京: 化学工业出版社, 2005: 53)

[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[8] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[9] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[10] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[11] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[12] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[13] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[14] Zhe SONG, Shengchuan WU, Yanan HU, Guozheng KANG, Yanan FU, Tiqiao XIAO. The Influence of Metallurgical Pores on Fatigue Behaviors of Fusion Welded AA7020 Joints[J]. 金属学报, 2018, 54(8): 1131-1140.
[15] Jun LI, Mingxu XIA, Qiaodan HU, Jianguo LI. Solutions in Improving Homogeneities of Heavy Ingots[J]. 金属学报, 2018, 54(5): 773-788.
No Suggested Reading articles found!