NUMERICAL SIMULATION OF WELD FORMATION IN LASER+GMAW HYBRID WELDING III. Treatment of Pulsed Arc Action and Improvement of Heat Source Modes
XU Guoxiang1;WU Chuansong1;QIN Guoliang2; WANG Xuyou2;LIN Shangyang2
1 Institute for Materials Joining; Shandong University; Jinan 250061 2 Harbin Welding Institute; China Academy of Machinery Science & Technology; Harbin 150080
Cite this article:
XU Guoxiang WU Chuansong QIN Guoliang WANG Xuyou LIN Shangyang. NUMERICAL SIMULATION OF WELD FORMATION IN LASER+GMAW HYBRID WELDING III. Treatment of Pulsed Arc Action and Improvement of Heat Source Modes. Acta Metall Sin, 2009, 45(1): 107-112.
Considering the thermal action characteristics of pulsed arc in laser+pulsed GMAW (gas metal arc welding) hybrid welding, the arc heat flux is divided into two double-elliptic distribution modes with different parameters corresponding to pulse current duration and base current duration. Meanwhile, the thermal conductivity at the weldment surface is appropriately lowered to take account of intermittent action of pulse and base current indirectly. Based on the level of averaged welding current, the distributed region for double-ellipsoid of droplets heat content is determined, and the action location of laser heat input is taken into consideration. The previous heat source modes have been improved through dealing with the abovementioned aspects, and two new kinds of adaptive combined volumetric heat source modes are developed. The weld geometry and dimensions are numerically simulated under different conditions in hybrid welding process by using the improved heat source modes. The predicted weld penetration depth, width and fusion line locus all agree well with the experimental results. Thus, numerical simulation accuracy for hybrid welding has been greatly improved.
[1] Matsuyama K. In: Chinese Mechanical Engineering Society, ed., Proc Int Forum on Welding Technology in Automobile Industry, Beijing: Chinese Mechanical Engineering Society, 2003: 81
(松田健一. 见: 中国机械工程学会主编, 汽车焊接国际论坛论文集, 北京: 中国机械工程学会, 2003: 81)
[2] Shi S, Howse D. In: Chinese Mechanical Engineering Society, ed., Proc Int Forum on Welding Technology in Shipping Industry, Beijing: Chinese Mechanical Engineering Society, 2007: 41
(Shi S, Howse D. 见: 中国机械工程学会主编, 造船焊接国际论坛论文集, 北京: 中国机械工程学会, 2007: 41)
[3] Bagger C, Olsen F O. J Laser Appl, 2005; 17: 2
[4] Mahrle A, Beyer E. J Laser Appl, 2006; 18: 169
[5] Cho M H, Lim Y C, Farson D F. Weld J, 2006; 85: 271s
[6] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2008; 44: 478
(胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2008; 44: 478)
[7] Xu G X, Wu C S, Qin G L, Wang X Y, Lin S Y. Acta Metall Sin, 2008; 44: 641
(胥国祥, 武传松, 秦国梁, 王旭友, 林尚扬. 金属学报, 2008; 44: 641)
[8] Yin S Y. Basis of Gas–Shielded Welding Processes. Beijing: China Machine Press, 2007: 174
(殷树言. 气体保护焊工艺基础. 北京: 机械工业出版社, 2007: 174)
[9] He D F. Introduction to Welding and Joining Engineering. Shanghai: Shanghai Jiaotong University Press, 2002: 115
(何德浮. 焊接与连接工程概论. 上海: 上海交通大学出版社, 2002: 115)
[10] Shi Y W. China Materials Engineering Canon. Vol.22, Beijing: Chemical Industry Press, 2005: 53
(史耀武. 材料工程大典. 第22卷, 北京: 化学工业出版社, 2005: 53)