Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (9): 1141-1148     DOI:
Research Articles Current Issue | Archive | Adv Search |
The interfacial behavior of molten steel and liquid slag in a slab continuous casting mold with electromagnetic brake and argon gas injection
YU Hai-Qi
辽宁省沈阳市东北大学
Cite this article: 

YU Hai-Qi. The interfacial behavior of molten steel and liquid slag in a slab continuous casting mold with electromagnetic brake and argon gas injection. Acta Metall Sin, 2008, 44(9): 1141-1148 .

Download:  PDF(6983KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  It described a numerical simulation study for the interfacial behaviour between molten steel and liquid slag layer with different flow-control technologies in the slab continuous casting mold, considering the effects of argon gas flow rate, casting speed and current intensity of coils on the interfacial behaviour of molten steel and liquid slag with the coupling action of electromagnetic brake (EMBr) and argon gas injection. The relationship between the level fluctuation index of F value and level fluctuation of free surface was also investigated. For a given casting speed with EMBr, increasing the argon gas flow rate can aggravate the local fluctuation of interface so much as lead to the breakup of the steel-slag interface, F value increases with the increasing argon gas flow rate and the thickness of liquid slag near the meniscus increases linearly with F value. For a given argon gas flow rate with EMBr, increasing the casting speed has helpful for restraining the interfacial fluctuation near the nozzle, and F value also increasing, the thickness of liquid slag near the meniscus reduces linearly with F value. On the contrary, for a certain casting speed and argon gas flow rate, increasing the current intensity of coils can aggravate the steel/slag interfacial fluctuation near the nozzle.
Key words:  slab mold      electromagnetic brake      argon gas injection      steel/slag interface      numerical simulation      
Received:  14 January 2008     
ZTFLH:  TF777.1  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I9/1141

[1]Gupta D,Lahiri A K.Metall Mater Trans,1994;25B:227
[2]McDavid R M,Thomas B G.Metall Mater Trans,1996; 27B:672
[3]Ilegbusi O J,Szekely J.ISIJ Int,1994;34:943
[4]Panaras G A,Theodorakakos A,Bergeles G.Metall Mater Trans,1998;29B:1117
[5]Theodorakakos A,Bergeles G.Metall Mater Trans,1998; 29B:1321
[6]Anagnostopoulos J,Bergeles G.Metall Mater Trans,1999; 30B:1095
[7]Cao N,Zhu M Y.Acta Metall Sin,2007;43:834 (曹娜,朱苗勇.金属学报,2007;43:834)
[8]Tan L J,Shen H F,Liu B C,Liu X,Xu R J,Li Y Q.Acta Metall Sin,2003;39:435 (谭利坚,沈厚发,柳百成,刘晓,徐荣军,李永全.金属学报,2003;39:435)
[9]Liu H P,Wang Z Y.Res Iron Steel,2002;30(2):47 (刘和平,王忠英.钢铁研究,2002;30(2):47)
[10]Yu H Q,Zhu M Y.Acta Metall Sin,2008;44:619 (于海岐,朱苗勇.金属学报,2008;44:619)
[11]Fluent Inc.,Fluent 6.3 User's Guide,Chapter 22, Lebanon,NH,2006:1
[12]Pfeiler C,Wu M,Ludwig A.Mater Sci Eng,2005;A413: 115
[13]Teshima T,Kuboto J,Suzuki M,Ozawa K,Masaoka T, Miyahara S.Tetsu Hagané,1993;79:576 (手嵨俊雄,久保田淳,铃木幹雄,小泽宏一,政岡俊雄,宫原忍.铁と钢,1993;79:576)
[14]Satish Kumar D,Rajendra T,Sarkar A,Karande A K, Yadav U S.Ironmaking Steelmaking,2007;34:185
[15]Zhang L F,Yang S B,Cai K K,Li J Y,Wan X G,Thomas B G.Metall Mater Trans,2007;38B:63
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[8] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[9] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[10] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[11] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[12] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[13] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[14] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[15] Jun LI, Mingxu XIA, Qiaodan HU, Jianguo LI. Solutions in Improving Homogeneities of Heavy Ingots[J]. 金属学报, 2018, 54(5): 773-788.
No Suggested Reading articles found!