Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (5): 459-464     DOI:
Research Articles Current Issue | Archive | Adv Search |
INFLUENCE OF SAMPLE THICKNESS ON THE PATTERN FORMATION IN EUTECTIC SYSTEM
Guanghui Meng
西北工业大学凝固技术国家重点实验室 (西北工业大学543#信箱)
Cite this article: 

Guanghui Meng. INFLUENCE OF SAMPLE THICKNESS ON THE PATTERN FORMATION IN EUTECTIC SYSTEM. Acta Metall Sin, 2007, 43(5): 459-464 .

Download:  PDF(367KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Directional solidification studies have been carried out in transparent organic alloy CBr4-C2Cl6 system in order to obtain information related to influence of the sample thickness on the eutectic pattern formation and lamellar spacings adjustment mechanism in initial transient growth stage in eutectic systems. Thickness of the samples is within 16~100μm. Results showed that the capillary anisotropy affects considerably the eutectic grain formation when thickness equal to or less than 48μm due to eutectic grain consisting of titled lamellae will be form under such conditions. At the same time, in transient region the lamellar adjustment mechanism is sample thickness dependent remarkably, and which behaviors with bi-dimensional characteristics will be to occur only when sample thickness is 16μm or less.
Key words:  eutectic      lamellar spacing      anisotropy of interfacial energy      
Received:  23 August 2006     
ZTFLH:  TG244  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I5/459

[1] Trivedi R, Kurz W. In: Stefanescu M A, Abbaschian G J J, eds., Solidification Processing of Eutectic Alloys, War- rendale, PA: AIME, 1988: 3
[2] Jackson K A, Hunt J D. Trans AIME, 1966; 236: 1129
[3] Sato T, Sayama Y. J Cryst Growth, 1974; 22: 259
[4] Magnin P, Trivedi R. Acta Metall Mater, 1991; 39: 453
[5] Zheng L L, Larson D J, Zhang J H. J Cryst Growth, 2000; 209: 110
[6] Catalina A V, Sen S, Stefanescu D M. Metall Mater Trans, 2003; 34A: 383
[7] Trivedi R, Magnin P, Kurz W. Acta Metall, 1987; 35: 974
[8] Flolch R, Plapp M. Phys Rev, 2003; 68E: 010602(R)
[9] Akamatsu S, Bottin-Rousseau S, Faivre G. Phys Rev Lett, 2004; 93: 175701
[10] Mergy J, Faivre G, Guthmann C, Mellet R. J Cryst Growth, 1993; 134: 353
[11] Seetharaman V, Trivedi R. Metall Trans, 1988; 19A: 2955
[12] Jordan R M, Hunt J D. Metall Trans, 1972; 3: 1385
[13] Juarez-Hernandez A, Jones H. Metall Mater Trans, 2000; 31A: 327
[14] Dunning W J. J Phys Chew. Solids, 1961; 18: 21
[15] Tiller W A, Jackson K A, Rutter J W, Chalmers B. Acta Metall, 1953; 1: 428
[16] Caroli B, Caroli C, Faivre G, Mergy J. J Cryst Growth, 1992; 118: 135
[17] Faivre G. Phys Rev, 1992; 45A: 7320
[18] Seetharaman V, Fabietti L M, Trivedi R. Metall Trans, 1989; 20A: 2567
[19] Kassner K, Misbah C. Phys Rev, 1991; 44A: 6533
[1] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[2] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[3] ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La[J]. 金属学报, 2023, 59(11): 1541-1546.
[4] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[5] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[6] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[7] XU Junfeng, ZHANG Baodong, Peter K Galenko. Model of Eutectic Transformation Involving Intermetallic Compound[J]. 金属学报, 2021, 57(10): 1320-1332.
[8] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[9] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
[10] BAO Feiyang, LI Yanfen, WANG Guangquan, ZHANG Jiarong, YAN Wei, SHI Quanqiang, SHAN Yiyin, YANG Ke, XU Bin, SONG Danrong, YAN Mingyu, WEI Xuedong. Corrosion Behaviors and Mechanisms of ODS Steel Exposed to Static Pb-Bi Eutectic at 600 and 700 ℃[J]. 金属学报, 2020, 56(10): 1366-1376.
[11] ZHANG Jianfeng,LAN Qing,GUO Ruizhen,LE Qichi. Effect of Alternating Current Magnetic Field on the Primary Phase of Hypereutectic Al-Fe Alloy[J]. 金属学报, 2019, 55(11): 1388-1394.
[12] Baogang WANG, Hongliang YI, Guodong WANG, Zhichao LUO, Mingxin HUANG. Reconstruction of 3D Morphology of TiB2 in In Situ Fe Matrix Composites[J]. 金属学报, 2019, 55(1): 133-140.
[13] Guangdong WANG, Ni TIAN, Changshu HE, Gang ZHAO, Liang ZUO. Formation of Second-Phases in a Direct-Chill Casting Al-12Si-0.65Mg-xMn Alloy[J]. 金属学报, 2018, 54(7): 1059-1067.
[14] Jianfeng ZHANG, Qing LAN, Qichi LE. Investigation on the Change of Thermoelectric Power of Al-Fe Hypoeutectic Alloy Melt Caused by AC Magnetic Field[J]. 金属学报, 2018, 54(7): 1042-1050.
[15] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
No Suggested Reading articles found!