Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (3): 259-263     DOI:
Research Articles Current Issue | Archive | Adv Search |
ATOMISTIC SIMULATION OF STRESS-INDUCED CRYSTALLIZATION BEHAVIOR DURING THE INDENTATION PROCESS FOR AMORPHOUS Cu
WANG Hailong; WANG Xiuxi; WANG Yu; LIANG Haiyi
Key Laboratory of Mechanical Behavior and Design of Materials of CAS; University of Science and Technology of China; Hefei 230026
Cite this article: 

WANG Hailong; WANG Xiuxi; WANG Yu; LIANG Haiyi. ATOMISTIC SIMULATION OF STRESS-INDUCED CRYSTALLIZATION BEHAVIOR DURING THE INDENTATION PROCESS FOR AMORPHOUS Cu. Acta Metall Sin, 2007, 43(3): 259-263 .

Download:  PDF(973KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Molecular dynamics simulations were performed to investigate stress induced crystallization behavior during the indentation process for amorphous Cu. The interaction between atoms in the system adopts the embedded atom method (EAM) reported by Mishin. The Variations of energy, stress and microstructure during the indentation process were studied. The results show that the small grains nucleate at the plastic deformation region, then grow and coalesce with deformation. The local plastic deformation induces the crystal nucleation, grain growth and grain coalescence. The final crystalline phase has an FCC structure which (111) plane is parallel to the shear direction. The nanocrystal grains embedded in the amorphous phase can enhance the rigidity of the sample.
Key words:  indentation      metallic glass      stress-induced crystallization      
Received:  05 June 2006     
ZTFLH:  TG146.4  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I3/259

[1]Greer A L.Science,1995;267:1947
[2]Schneider S.J Phys:Condense Matter,2001;13:7723
[3]Lu K.Acta Metall Sin,1994;30:B1 (卢柯.金属学报,1994;30:B1)
[4]Ogura M,Tarumi R,Shimojo M,Takashima K,Higo Y. Appl Phys Lett,2001;79:1042
[5]Chen H,He Y,Shiflet G J,Poon S J.Nature,1994;367: 541
[6]Kim J J,Choi Y,Suresh S,Argon A S.Science,2002;295: 654
[7]Lee J C,Kim Y C,Ahn J P,Kim H S,Lee S H,Lee B J. Acta Mater,2004;52:1525
[8]Mishin Y,MehI M J,Papaconstantopoulos D A,Voter A F,Kress J D.Phys Rev,2001;63B:224106
[9]Daw M S,Baskes M I.Phys Rev,1984,29B:6443
[10]Daw M S,Baskes M I.Phys Rev Lett,1983;50:1285
[11]Ackland G J,Tichy G,Vitek V,Finnis M W.Philos Mag, 1987;56A:735
[12]Lee H J.Molecular Dynamics Studies of Metallic Glass. Pasadena:California Institute of Technology,2003
[13]Honeycutt J D,Andersen H C.J Phys Chem,1987;91: 4950
[14]Nose S.Mol Phys,1984;52:255
[15]Parrinello M,Rahman A.J Appl Phys,1981;52:7182
[16]Lilleodden E T,Zimmerman J A,Folies S M,Nix W D.J ??Mech Phys Solids,2003;51:901
[17]Schuh C A,Nieh T G.Acta Mater,2003;51:87
[18]Ogura A,Tarumi R,Shimojo M,Takashima K,Higo Y. Appl Phys Lett,2001;79:1042
[19]Tarumi R,Ogura A,Shimojo M,Takashima K,Higo Y. Jpn J Appl Phys,2000;39:L611
[20]Sutton M,Yang Y S,Mainville J,Jordan-Sweet J L,Lud- wig K F,Stephenson G B Jr.Phys Rev Lett,1989;62: 288
[21]Lu K,Wang J T.Acta Metall Sin,1990;26:B316 (卢柯,王景唐.金属学报,1990;26:B316)
[22]Lu K,Wang J T,Dong Lin.Acta Metall Sin,1991;27: B31 (卢柯,王景唐,董林.金属学报,1991;27:B31)
[1] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[2] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[3] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[4] LI Ning, HUANG Xin. Recent Advances on 3D Printed Bulk Metallic Glasses[J]. 金属学报, 2021, 57(4): 529-541.
[5] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[6] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[7] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[8] PAN Jie, DUAN Fenghui. Rejuvenation Behaviors in Metallic Glasses[J]. 金属学报, 2021, 57(4): 439-452.
[9] BI Jiazi, LIU Xiaobin, LI Ran, ZHANG Tao. Tribological Properties of Polyalphaolefin (PAO6) Lubricant Modified with Particles Additives of Metallic Glass[J]. 金属学报, 2021, 57(4): 559-566.
[10] GUAN Pengfei, SUN Shengjun. Atomic-Level Study in the Structure and Its Instability of Metallic Glasses[J]. 金属学报, 2021, 57(4): 501-514.
[11] ZENG Qiaoshi, YIN Ziliang, LOU Hongbo. Polyamorphic Transitions in Metallic Glasses[J]. 金属学报, 2021, 57(4): 491-500.
[12] YANG Qun, PENG Sixu, BU Qingzhou, YU Haibin. Revealing Glass Transition and Supercooled Liquid in Ni80P20 Metallic Glass[J]. 金属学报, 2021, 57(4): 553-558.
[13] JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. 金属学报, 2021, 57(4): 425-438.
[14] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[15] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
No Suggested Reading articles found!