Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (2): 182-186     DOI:
Research Articles Current Issue | Archive | Adv Search |
CALCULATION OF THE RELAXED STRUCTURE AND ENERGY OF EDGE DISLOCATION IN BCC METAL BY MODIFIED ANALYTICAL EMBEDDED-ATOM METHOD
;
陕西师范大学
Cite this article: 

;. CALCULATION OF THE RELAXED STRUCTURE AND ENERGY OF EDGE DISLOCATION IN BCC METAL BY MODIFIED ANALYTICAL EMBEDDED-ATOM METHOD. Acta Metall Sin, 2007, 43(2): 182-186 .

Download:  PDF(181KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Combining MAEAM with MD simulation method, both the relaxed structure and strain energy of an a[100] edge dislocation in BCC metal Mo have been simulated systematically in atomic scales. The results show that the relaxed structure has a C2V type group symmetry.Calculated strain energy Es per unit length of the dislocation is a linear function of ln(R/2b) while radial distance R≥1.5b=4.72Å, thus the corresponding core radius is determined to be rc=4.72Å. From intercept and slope of linear fitting those data corresponding to the outside of the dislocation core, we further infer the dislocation core energy Ecore=1.6334eV/Å, K=0.10eV/Å3, the latter is in agreement with the elasticity theory prediction (K=μ/4π(1-υ)=0.088eV/Å3).
Key words:  Mo      edge dislocation      structure      energy      
Received:  22 May 2006     
ZTFLH:  TG111.2  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I2/182

[1]Gao F.Acta Phys Sin,1990;39:1591(高飞.物理学报,1990;39:1591)
[2]Daw M S,Baskes M I.Phys Rev,1984;29B:6443
[3]Foiles S M,Baskes M I,Daw M S.Phys Rev,1986;33B:7983
[4]Adams J B,Foiles S M,Wolfer W G.J Mater Res,1989;4:102
[5]Daw M S,Baskes M I.Phys Rev Left,1983;50:1285
[6]Daw M S,Foiles S M.Phys Rev Lett,1987;59:2756
[7]Dodson B W.Phys Rev,1987;35B:880
[8]Johnson R A.Phys Rev,1988;37B:3924
[9]Baskes M I.Phys Rev,1992;46B:2727
[10]Zhang B W,Ouyang Y F.Phys Rev,1993;48B:3022
[11]Zhang B W,Ouyang Y F,Liao S Z,Jin Z P.Physica,1999;262B:218
[12]Hu W Y,Zhang B W,Huang B Y,Gao F,Bacon D J.J Phys:Condens Matter,2001;13:1193
[13]Hu W Y,Zhang B W,Shu X L,Huang B Y.J Alloy Compd,1999;287:159
[14]Zhang J M,Ma F,Xu K W.Surf Interface Anal,2005;35:662
[15]Zhang J M,Ma F,Xu K W,Xin X T.Surf Interface Anal,2003;35:805
[16]Zhang J M,Wei X M,Xin H.Surf Interface Anal,2004;36:1500
[17]Zhang J M,Wei X M,Xin H.Appl Surf Sci,2005;243:1
[18]Zhang J M,Wei X M,Xin H,Xu K W.Chin Phys,2005;14:1015
[19]Ma F,Zhang J M,Xu K W.Surf Interface Anal,2003;36:355
[20]Zhang J M,Xin H,Wei X M.Appl Surf Sci,2005;246:14
[21]Xin H,Zhang J M,Wei X M,Xu K W.Surf Interface Anal,2005;37:608
[22]Zhang B W,Hu W Y,Shu X L.Theory of Embedded Atom Moethod and Its Application to Materials Science.Changsha:Hunan University Press,2003:249(张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科学中的应用.长沙:湖南大学出版社,2003:249)
[23]Hirth J P,Lothe J.Theory of Dislocations.New York:Wiley Press,1982:761
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[11] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[12] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[13] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[14] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[15] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
No Suggested Reading articles found!