Please wait a minute...
Acta Metall Sin  2007, Vol. 42 Issue (1): 59-63     DOI:
Research Articles Current Issue | Archive | Adv Search |
SUBMICRON-NANOCRYSTALLIZATION OF LOW CARBON STEELS THROUGH TRANSFORMATION MECHANISM
Lin-Xiu DU;;;
东北大学
Cite this article: 

Lin-Xiu DU. SUBMICRON-NANOCRYSTALLIZATION OF LOW CARBON STEELS THROUGH TRANSFORMATION MECHANISM. Acta Metall Sin, 2007, 42(1): 59-63 .

Download:  PDF(822KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  For low carbon micro-alloyed steel, a process of nanocrystallization of steels through transformation mechanism was investigated. The austenite grain size was refined to 1~2m through heavy warmly deformation intigrating with repeatly heating and quenching; under common continous cooling conditions, the ferrite grain size transformed from1~2m ultrafine austenite will be near to or larger than the original austenite grian size, i.e.,d/d>1;but if the heavy deformation was applied below Ar3 during cooling, the uniform and equiaxed ferrites with grain size of 0.1~0.3冚m, close to nanosize, can be obtained. The results indicate that heavy warm deformation can make the carbides in original microstructrures distribute uniformly, and this accelerate the dissolving of the carbides and the formation of ultrafine austenite. The main mechanism of deformation induced ferrite transformation of ultrafine austenite is that the nucleation of ferrite along austenite boundarie is enhenced by the boundary slipping of austenite grains.
Key words:  nanocrystallization      transformation      deformation      grain ultrafinement      low carbon steels      
Received:  23 May 2006     
ZTFLH:  TG113.2  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V42/I1/59

[1] Liu X H,Lu J X,Zhang P J,Du L X,Wang G D.Chin J Nonferrous Met,2004;14(Suppl.1):208 (刘相华,陆匠心,张丕军,杜林秀,王国栋.中国有色金属学报,2004;14(增刊1):208)
[2] Adachi Y,Tomida T,Hinotani S.Tetsu Hagane,1999;85: 620 (足立吉隆,富田俊郎,日野谷重晴.铁と钢, 1999;85:620)
[3] Valiev R Z,Ivanisenko Y V,Rauch E F.Acta Mater,1996; 44:1751
[4] Umemoto M.Mater Trans,2003;44:1900
[5] Tao N R,Sui M L,Ku J,Lu K.NanoStruct Mater,1999; 11:433
[6] Tsuji N,Ueji R,Minamino Y A.Scr Mater,2002;46:305
[7] Yokota T, Garcia M C,Bhadeshia H K D H.Scr Mater, 2004;51:767
[8] Law N C,Edmonds D V.Metall Trans,1980;11A:33
[9] Specich G S,Demarest V A,Miller R A.Metall Trans, 1981;12A:1419
[10] Du L X,Zhang C B,Ding H,Liu X H,Wang G D.ISIJ Int, 2002;42:1119
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[4] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[7] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[8] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[9] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[10] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[11] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[12] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[13] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[14] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[15] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
No Suggested Reading articles found!