Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (8): 792-796     DOI:
Research Articles Current Issue | Archive | Adv Search |
MICROSTRUCTURE STUDY OF INTERFACIAL ZONE OF SiCf/ Ti-22Al-23Nb-2Ta MATRIX COMPOSITE
Changyou Guo
东北大学理学院
Cite this article: 

Changyou Guo. MICROSTRUCTURE STUDY OF INTERFACIAL ZONE OF SiCf/ Ti-22Al-23Nb-2Ta MATRIX COMPOSITE. Acta Metall Sin, 2006, 42(8): 792-796 .

Download:  PDF(1214KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The interfacial microstructure of SiC fibre reinforced Ti-22Al-23Nb-2Ta matrix composite, which was prepared by hot isostatic pressing (HIP) of power-clothed precursor wire, was investigated by analytical transmission electron microscopy (TEM). A new interfacial structure, consisting of fine grain TiC+TiSi, equiaxed TiC and (Al,Ti)Nb2 phase layer, was found at the fibre /matrix interface of the composite. A formation mechanism of the interface is proposed: the reaction of Ti with C-coating results in the formation of TiC; as a consequence, Nb is rich in Ti-depletion layer beneath TiC layer and forms (Al,Ti)Nb2 phase.
Key words:  transmission electron microscopy(TEM)      interfacial microstructure      composite      (Al      Ti)Nb2 phase      
Received:  09 December 2005     
ZTFLH:  TG146.2  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I8/792

[1]Smith P R,Graves J A,Rhodes C G.Metall Mater Trans,1994;25A:1267
[2]Boehlert C J,Majumdar B S,Krishnamurthy S,Miracle D B.Metll Mater Trans,1997;28A:309
[3]Yang Y Q,Zhu Y,Ma Z J,Y Chen.Scr Mater,2004;51:385
[4]Banerjee D.Prog Mater Sci,1997;42:135
[5]Peng J H,Li S Q,Mao Y,Sun X F.Mater Lett,2002;53:57
[6]Guo Z X,Derby B.Prog Mater Sci,1995;39:411
[7]Chol S K,Chandrasekaran M,Brabers M J.J Mater Sci,1990;25:1957
[8]Hall I W,Lirn J L,Rizza J.J Mater Sci Lett,1991;10:263
[9]Gundel D B,Warrier S G,Miracle D B.Acta Mater,1997;45:1275
[10]Yang Y Q,Dudek H J.Scr Mater,1997;37:503
[11]GUO Z X,Derby B.Scr Metall Mater,1994;30:89
[12]Yang Y Q,Dudek H J,Kumpfert J.Mater Sci Eng,1998;A246:213
[13]Duder H J,Borath R,Leucht R,Kaysser W A.J Mater Sci,1997;32:5355
[14]Guo S Q,Kagawa Y,Saito H,Masuda C.Mater Sci Eng,1998;A246:25
[15]Agnès O.Carbon,2002;40:7
[16]Shih D S,Amato R A.Scr Metall Mater,1990;24:2053
[17]Jorda J L,Flǖkiger R,Muller J.J Less Common Met,1980;75:2,
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[5] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[6] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[7] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[8] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[9] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
[10] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[11] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[12] FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. 金属学报, 2022, 58(11): 1416-1426.
[13] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[14] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[15] LI Wenya, ZHANG Zhengmao, XU Yaxin, SONG Zhiguo, YIN Shuo. Research Progress of Cold Sprayed Ni and Ni-Based Composite Coatings: A Review[J]. 金属学报, 2022, 58(1): 1-16.
No Suggested Reading articles found!