Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (4): 369-374     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effect Of Silver Addition On Surface Morphology Of Al2O3 Scales During Oxidation Of β-NiAl
ZHANG Xuejun; WU Weitao; NIU Yan
State Key Laboratory for Corrosion and Protection; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

ZHANG Xuejun; WU Weitao; NIU Yan. Effect Of Silver Addition On Surface Morphology Of Al2O3 Scales During Oxidation Of β-NiAl. Acta Metall Sin, 2005, 41(4): 369-374 .

Download:  PDF(627KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of adding small amounts of Ag to β-NiAl on surface morphology of alumina scale during the oxidation at 1000-1100oC and the oxidation kinetics of β-NiAl and NiAl-1Ag were investigated by TGA and SEM/EDS. The kinetics of β-NiAl presents two parabolic stages controlled by the growth of metastable alumina and stable α-Al2O3, respectively, while those of NiAl-1Ag are composed of three different parabolic stages controlled by the growth of γ-Al2O3, θ-Al2O3 and α-Al2O3, respectively. The additions of small amounts of Ag to β-NiAl favors the phase transformation from metastable alumina to α-Al2O3, while this effect disappears for an Ag content above 5% at 1000oC. Finally, the addition of 0.5% Ag to β-NiAl does not affect the surface morphology of Al2O3 at 1100oC.
Key words:  Ag      high temperature oxidation      
Received:  24 September 2004     
ZTFLH:  TG146  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I4/369

[1]Zhou J, Guo J T. Mater Sci Eng, 2003; A339: 166
[2]Rybicki G C, Smialek J L. Oxid Met, 1989; 31: 275
[3]Doychak J, Smialek J L, Mitchell T E. Metall Trans, 1989; 20A: 499
[4]Mosely P T, Hyde K R, Bellany B A, Tappin G. Carros Sci, 1984; 24: 547
[5]Doychak J, Ruhle M. Oxid Met, 1989; 31: 431
[6]Hagel W C. Corrosion, 1965; 21: 316
[7]Wood G C, Ghattopadhay B. Garros Sci, 1970; 10: 471
[8]Wood G C, Chattopadhay B. Oxid Met, 1970; 2: 373
[9]Smialek J L, Gibala R. Metall Trans, 1983; A10: 2143
[10]Brumm M W, Grabke H J. Corros Sci, 1992; 33: 1677
[11]Brumm M W, Grabke H J. Corros Sci, 1993; 34: 547
[12]Brumm M W, Grabke H J, Wagemann B. Corros Sci, 1994; 36: 37
[13]Grabke H J, Meier G H. Oxid Met, 1995; 44: 147
[14]Grabke H J, Wiemer D, Viefhaus H. Appl Surf Sci, 1997; 47: 243
[15]Grabke H J, Brumm M W, Wagemann B. Mater Corros, 1996; 47: 675
[16]Pint B A, Treska M, Hobbs L W. Oxid Met, 1997; 47: 1
[17]Yang S L, Wang F H, Niu Y, Wu W T. Mater Sci Forum, 2001; 369-372: 361
[18]Li M J, Sun X F, Guan H R, Jiang X X, Hu Z Q. Oxid Met, 2003; 59: 483
[19]Li M J, Sun X F, Guan H R, Jiang X X, Hu Z Q. Acta Metall Sin, 2003; 39: 755 (李猛进,孙晓峰,管恒荣,姜晓霞,胡壮麒.金属学报,2003; 39:755)
[20]Zhang X J, Wu W T, Guo J T, Niu Y. High Temp Mater Proc, in press
[21]Grabke H J. Intermetallics, 1999; 7: 1153
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[5] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[6] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[7] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[8] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[9] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[10] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[11] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[12] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[13] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[14] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[15] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
No Suggested Reading articles found!