Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (3): 326-332     DOI:
Research Articles Current Issue | Archive | Adv Search |
Compressive deformation behavior of TiC/AZ91Dcomposites at elevated temperatures
CHEN Liqing; DONG Qun; GUO Jinhua; BI Jing; XU Yongbo
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

CHEN Liqing; DONG Qun; GUO Jinhua; BI Jing; XU Yongbo. Compressive deformation behavior of TiC/AZ91Dcomposites at elevated temperatures. Acta Metall Sin, 2005, 41(3): 326-332 .

Download:  PDF(431KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In situ reactive infiltration technique was utilized to synthesis TiC particulate-reinforced magnesium matrix composites (TiC/AZ91D). The hot compressive behavior of as fabricated composites was studied at strain rates $\dot{\varepsilon} =10 -3-10 -1 s-1 and at temperatures of 573-723 K. The strain rate sensitivity exponent ($m$), apparent activation energy (Q) and their relations with TiC content and temperature were calculated and analyzed according to the true stress-true strain curves. The results show that the compressive flow stress of the composites increases with increasing the TiC content. For the same TiC content, the flow stress decreases with elevating deformation temperatures or with decreasing the initial strain rates. The m value increases with increasing temperature and at the same deformation temperature and strain rate, the m value increases with increasing the TiC content. The Q value depends on the deformation temperature, strain rate and TiC content and its distribution, and the composites exhibit different deformation mechanisms at elevated temperatures.
Key words:  magnesium matrix composite      reactive infiltration      in situ synthesis      
Received:  21 April 2004     
ZTFLH:  TB333  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I3/326

[1] Lloyd D J. Int Mater Rev, 1994; 39: 1
[2] Hu H, Yu A, Li N Y, Allison J E. Mater Manufact Process, 2003; 18: 687
[3] Krishnadev M R, Angers R, Krishnadas Nair C G, Huard G. JOM, 1993; 45: 52
[4] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37
[5] Saravanan R A, Surappa M K. Mater Sci Eng, 2000; A276: 108
[6] Cai Y, Taplin D, Tan M J, Zhou W. Scr Mater, 1999; 41: 967
[7] Dong Q, Chen L Q, Zhao M J, Bi J. Mater Lett, 2004; 58: 920
[8] Chen L Q, Dong Q, Zhao M J, Bi J. Chin J Mater Res, 2004; 18: 193 (陈礼清,董群,赵明久,毕敬.材料研究学报,2004;18: 193)
[9] Dong Q, Chen L Q, Zhao M J, Bi J. J Mater Sci Technol, 2004; 20: 3
[10] Chen L Q, Dong Q, Zhao M J, Bi J, Kanetake N. Mater Sci Eng, 2005; A, in press
[11] Li S B, Wu K, Zheng M Y, Yao Z K. Mater Eng, 2003; (2): 15 (李淑波,吴昆,郑明毅,姚忠凯.材料工程,2003;(2):15)
[12] Jiang D T, Guo J T, Li G S, Shi C X. Acta Metall Sin, 1998; 34: 1143 (姜东涛,郭建亭,李谷松,师昌绪.金属学报,1998;34:1143)
[13] Roberts W, Kraussed G. In: Kraussed G ed., Deformation, Processing and Structure. Metals Park, OH: American Society for Metals, 1984: 109
[14] Barbagallo S, Cavaliere P, Cerri E. Mater Sci Eng, 2004; A367: 9
[1] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[2] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[3] Ting ZHANG,Yuhong ZHAO,Liwen CHEN,Jianquan LIANG,Muxi LI,Hua HOU. Graphene Nanoplatelets Reinforced Magnesium Matrix Composites Fabricated by Thixomolding[J]. 金属学报, 2019, 55(5): 638-646.
[4] QIN Jiayu, LI Xiaoqiang, JIN Peipeng, WANG Jinhui, ZHU Yunpeng. Microstructure and Mechanical Properties of Carbon Nanotubes (CNTs) Reinforced AZ91 Matrix Composite[J]. 金属学报, 2019, 55(12): 1537-1543.
[5] Yantao YAO, Liqing CHEN, Wenguang WANG. Damping Capacities of (B4C+Ti) Hybrid Reinforced Mg and AZ91D Composites Processed by In Situ Reactive Infiltration Technique[J]. 金属学报, 2019, 55(1): 141-148.
[6] Xiaojun WANG, Yeyang XIANG, Xiaoshi HU, Kun WU. Recent Progress on Magnesium Matrix Composites Reinforced by Carbonaceous Nanomaterials[J]. 金属学报, 2019, 55(1): 73-86.
[7] Hongxi LIU,Zhengxue LI,Xiaowei ZHANG,Jun TAN,Yehua JIANG. Effect of Heat Treatment on High-Temperature Oxidation Resistance of High Niobium Ti-Al Intermetallic Coating Fabricated by Laser In Situ Synthesis on Titanium Alloy[J]. 金属学报, 2017, 53(2): 201-210.
[8] Haoran ZHENG, Minfang CHEN, Zhen LI, Chen YOU, Debao LIU. Effects of MgO Modified HA Nanoparticles on the Microstructure and Properties of Mg-Zn-Zr/m-HA Composites[J]. 金属学报, 2017, 53(10): 1364-1376.
[9] HU Na, XUE Lihong, GU Jian, LI Heping, YAN Youwei. OPTIMIZATION OF GRADING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Al13Fe4/Al COM- POSITES IN SITU SYNTHESIZED BY MECHANICAL ALLOYING AND SPARK PLASMA SINTERING[J]. 金属学报, 2015, 51(2): 216-222.
[10] ZHANG Xiaowei LIU Hongxi JIANG Yehua WANG Chuanqi. LASER IN SITU SYNTHESIZED TiN/Ti3Al COMPOSITE COATINGS[J]. 金属学报, 2011, 47(8): 1086-1093.
[11] ZHU Qingzhen XUE Wenbin LU Liang DU Jiancheng LIU Guanjun LI Wenfang. PREPARATION OF MICROARC OXIDATION COATING ON (Al2O3-SiO2)sf/AZ91D MAGNESIUM MATRIX COMPOSITE AND ITS ELECTROCHEMICAL IMPEDANCE SPECTROSCOPIC ANALYSIS\par[J]. 金属学报, 2011, 47(1): 74-80.
[12] LI Xiaojun; CHAI Donglang; XI Yulin. Analog Simulation of Local Stress Field in SiCp Reinforced Magnesium Matrix Composites[J]. 金属学报, 2004, 40(9): 927-929 .
[13] WANG Huabin; HAN Jiecai; DU Shanyi (Center of Composite Materials; Harbin Institute of Technology; Harbin 150001). MICROSTRUCTURES AND PROPERTIES OF IN SITU SYNTHESIS Ni/Ni-Al MULTILMER COMPOSITES[J]. 金属学报, 1998, 34(4): 431-436.
[14] ZHANG Laiqi;SUN Zuqing;ZHANG Yue;YANG Wangyue(State Key Laboratory of Advanced Metal Materials; University of Science & Technology Beijing; Beijing 100083). THERMODYNAMIC AND KINETIC ANALYSIS OF IN SITU SYNTHESIS OF MoSi_2-SiC COMPOSITE[J]. 金属学报, 1998, 34(11): 1205-1209.
No Suggested Reading articles found!