Effect of electromagnetic field on the behavior and distribution of the particles in front of metallic solidification interface
SUN Qiuxia; ZHONG Yunbo; REN Zhongming; LOU Lei; DENG Kang; XU Kuangdi
Shanghai Enhanced Laboratory of Modern Metallurgy & Materials Processing; Shanghai University; Shanghai 200072
Cite this article:
SUN Qiuxia; ZHONG Yunbo; REN Zhongming; LOU Lei; DENG Kang; XU Kuangdi. Effect of electromagnetic field on the behavior and distribution of the particles in front of metallic solidification interface. Acta Metall Sin, 2005, 41(3): 321-325 .
Abstract The quantitative relationship between the nonmetallic particle's
redistribution in metal and electromagnetic force (EMF)
was developed during the process of unidirectional
solidification in electromagnetic
field. It was pointed theoretically
that controlling the cycle of the
electromagnetic field and the solidified parameters
could produce a new composite material
in which the content of the particles is a function of the
unidistance from the growing interface. Experimental
results show that by applying periodical electromagnetic
force to the unidirectionally solidified hypereutectic
Al-19%Si alloy, the primary silicon--rich particles distributed
layer by layer, and the surface hardness fluctuated periodically.
Through adjusting the frequency of the
electromagnetic force and the rate of
the solidifying interface, the width
between the two adjacent layers could be
changed freely.
[1] Uhlmann D R, Chalmers B, Jackson K A. J Appl Phys, 1964; 35: 2986 [2] Omenyi S N, Neumann A W. J Appl Phys, 1976; 47: 3956 [3] Boiling G F, Cisse J. J Cryst Growth, 1971; 10: 56 [4] Cisse J, Boiling G F. J Cryst Growth, 1971; 10: 67 [5] Korber C, Rau G. J Cryst Growth, 1985; 72: 649 [6] Stefanescu D M, Dhindaw B K, Kacar S A. Metall Trans, 1988; 19A: 2847 [7] Garvin J W, Udaykumar H S. J Cryst Growth, 2003; 252: 451 [8] Hadji L. Scr Mater, 2003; 48: 665 [9] Shangguan D, Ahuja S, Stefanescu D M. Metall Trans, 1992; 23A: 669 [10] Wu S S, Nakae Hideo. Spec Found Nonferrous Alloy, 1998; (3):34 (吴树森,中江秀雄.特种铸造及有色合金, 1998;(3):34) [11] Zhong Y B, Ren Z M, Sun Q X, Deng K, Xu K D. Acta Metall Sin, 2003; 39: 1269 (钟云波,任忠鸣,孙秋霞,邓康,徐匡迪.金属学报,2003; 39:1269) [12] Marty P, Alemany A. In: Moffatt H K, Proctor M R E, eds., Proc Symp Int Union of Theoretical and Applied Mechanics (IUTAM), London: The Metals Society, 1982: 245 [13] Taniguchi S, Brimacombe J K. In: Asoi A, ed., Int Symp Electromagnetic Processing Materials, Nagoya, Iron and Steel Institute of Japan, 1994: 429 [14] Zhong Y B, Sun Q X, Ren Z M, Deng K, Xu K D. In: Asai S, Fautrelle Y, Gillon P, eds., Proc 4th Int Conf on Electromagnetic Processing of Materials (EPM 2003), Nagoya, Iron and Steel Institute of Japan, 2003: 404 [15] Han Q, Hunt J D. ISIJ Int, 1995; 35: 693 [16] Leenov D, Kolin A. J Chem Phys, 1954; 22: 683 [17] Kolin A. Science, 1953; 117: 134 [18] Han Q Y, Hunt J D. Acta Metall Sin, 1996: 32: 363 (韩青有,Hunt J D.金属学报,1996;32:363) [19] Li Q C. Theory of Cast Forming. Beijing: China Machine Press, 1982: 89 (李庆春.铸件形成理论.北京:机械工业出版社, 1982:89)f