Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (1): 108-    DOI:
Research Articles Current Issue | Archive | Adv Search |
Effects of Thermal Exposure on the Tensile and Fatigue Properties of Cast Ti—47Al—2Cr—2Nb--0.15B Alloy
CUI Yuyou; XIANG Hongfu; JIA Qing; YANG Rui
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

CUI Yuyou; XIANG Hongfu; JIA Qing; YANG Rui. Effects of Thermal Exposure on the Tensile and Fatigue Properties of Cast Ti—47Al—2Cr—2Nb--0.15B Alloy. Acta Metall Sin, 2005, 41(1): 108-.

Download:  PDF(466KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The elevated temperature fatigue strength and room temperature tensile properties and fatigue strength of cast Ti-47Al-2Cr-2Nb-0.15B(atomic fraction, %) alloy after thermal exposure were investigated. The microstructural change of the bulk alloy and the microstructure of surface layer after 650℃/100 h and 800℃/100 h exposures were analyzed by means of XRD and SEM. The room temperature tensile ductility and fatigue strength decreased slowly with increasing exposure temperature when it is below 650℃, and then rapidly decreased above this temperature. Dependence of fatigue strength for the unexposed alloy with test temperature exhibits the same trend. The surface layer formed after 650℃/100 h exposure is an oxygen-enriched layer, while that after 800℃/100 h exposure is an oxide layer consisting of TiO2 and Al2O3. Such a change in the nature of the surface layer corresponds to the onset of rapid drop in mechanical proerties and fatigue strength of the alloy with increasing exposure temperature.
Key words:  TiAl alloy      thermal exposure      room temperature ductility      fatigue strength      
Received:  11 February 2004     
ZTFLH:  TG146.1  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I1/108

[1] Kim Y W. JOM, 1994; 46(7): 30
[2] Kumpfert J, Kim Y W, Dimiduk D M. Mater Sci Eng A,1995;A192-A193:465
[3] Liu C T, Maziasz P J. Intermetallics, 1998; 6: 653
[4] Dowling W E Jr, Donlon W T. Scr Metall, 1992; 27: 1163
[5] Kelly T J, Austin C M, Fink P J, Schaeffer J. Scr Metall,1994; 30: 1105
[6] Lee D S, Stucke M A, Dimiduk D M. Mater Sci Eng A,1995; A192-A193: 824
[7] Planck S K, Rosenberger A H. In: Kim Y W, Dimiduk DM, Loretto M H eds, Gamma Titanium Aluminides 1999.Warrendale (PA): TMS, 1999: 791
[8] Pather R, Mitten W A, Holdway P, Ubhi H S, Wisbey A,Brooks J W. Intermetallics, 2003; 11: 1015
[9] Huang Z W, Voice W, Bowen P. Intermetallics, 2000; 8:417
[10] Beschliesser M, Chatterjee A, Lorich A, Knabl W, KestlerH, Dehm G, Clemens H. Mater Sci Eng A, 2002; A329-331: 124
[1] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[2] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[3] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[4] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[5] LI Tianrui, LIU Guohuai, YU Shaoxia, WANG Wenjuan, ZHANG Fengyi, PENG Quanyi, WANG Zhaodong. Microstructure Evolution and Deformation Mechanisms by Direct Hot-Pack Rolling for As-Cast Ti-46Al-8Nb Alloys[J]. 金属学报, 2020, 56(8): 1091-1102.
[6] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[7] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[8] Zhanxing CHEN,Hongsheng DING,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse[J]. 金属学报, 2019, 55(5): 611-618.
[9] Yimin LIAO, Min FENG, Minghui CHEN, Zhe GENG, Yang LIU, Fuhui WANG, Shenglong ZHU. Comparative Study of Hot Corrosion Behavior of theEnamel Based Composite Coatings and the ArcIon Plating NiCrAlY on TiAl Alloy[J]. 金属学报, 2019, 55(2): 229-237.
[10] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[11] HUANG Taiwen,LU Jing,XU Yao,WANG Dong,ZHANG Jian,ZHANG Jiachen,ZHANG Jun,LIU Lin. Effects of Rhenium and Tantalum on Microstructural Stability of Hot-Corrosion Resistant Single Crystal Superalloys Aged at 900 ℃[J]. 金属学报, 2019, 55(11): 1427-1436.
[12] Yu PAN, Xin LU, Chengcheng LIU, Jianzhuo SUN, Jianbo TONG, Wei XU, Xuanhui QU. Effect of Sn Addition on Densification and Mechanical Properties of Sintered TiAl Base Alloys[J]. 金属学报, 2018, 54(1): 93-99.
[13] Tianrui LI, Guohuai LIU, Mang XU, Hongzhi NIU, Tianliang FU, Zhaodong WANG, Guodong WANG. Microstructures and High Temperature Tensile Properties of Ti-43Al-4Nb-1.5Mo Alloy in the Canned Forging andHeat Treatment Process[J]. 金属学报, 2017, 53(9): 1055-1064.
[14] Zhanxing CHEN,Hongsheng DING,Shiqiu LIU,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Effects of Direct Current on Microstructure and Properties of Ti-48Al-2Cr-2Nb Alloy[J]. 金属学报, 2017, 53(5): 583-591.
[15] Gang WANG,Lei XU,Yuyou CUI,Rui YANG. DENSIFICATION MECHANISM OF TiAl PRE-ALLOY POWDERS CONSOLIDATED BY HOT ISOSTATIC PRESSING AND EFFECTS OF HEAT TREATMENTON THE MICROSTRUCTURE OF TiAl POWDER COMPACTS[J]. 金属学报, 2016, 52(9): 1079-1088.
No Suggested Reading articles found!