Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (7): 721-725     DOI:
Research Articles Current Issue | Archive | Adv Search |
EFFECT OF DEFORMATION ON THE STRESS--INDUCED MARTENSITIC TRANSFORMATION BEHAVIOR OF Ti44Ni47Nb9 WIDE HYSTERESIS SHAPE MEMORY ALLOY
HE Xiangming; RONG Lijian; YAN Desheng; JIANG Zhimin; LI Yiyi
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

HE Xiangming; RONG Lijian; YAN Desheng; JIANG Zhimin; LI Yiyi. EFFECT OF DEFORMATION ON THE STRESS--INDUCED MARTENSITIC TRANSFORMATION BEHAVIOR OF Ti44Ni47Nb9 WIDE HYSTERESIS SHAPE MEMORY ALLOY. Acta Metall Sin, 2004, 40(7): 721-725 .

Download:  PDF(179KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of deformation on the stress-induced martensitic transformation behavior of the Ti44Ni47Nb9 alloy was studied by DSC and cryogenic tensile tests at Ms+30℃. DSC measurements show that the process of stress--induced martensitic transformation is completed as the tensile strain reaches to about 14%, and the transformation is inhomogeneous microscopically. The reverse transformation temperature interval of the stress--induced martensite was found to be much smaller than that of the thermally induced martensite. The experimental results also indicate that A's temperature of the first reverse transformation, its temperature interval and transformation heat are all increased with increasing the level of deformation. However, the wide hysteresis effect due to the deformation vanished after the first heating. The transformation heat in the subsequent transformation cycle, the forward transformation start temperature of the first cooling and the reverse transformation start temperature of the second heating are all decreased slightly with increasing deformation.
Key words:  Ti--Ni--Nb shape memory alloy      deformation      
Received:  01 July 2003     
ZTFLH:  TG139.6  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I7/721

[1] Melton K N, Simpson J, Duerig T W. Proc Int Conf onMartensitic Transformations. Japan, 1986: 1053
[2] Melton K N, Proft J L, Duerig T W. Proc MRS Int Mtgon Adv Mater. Tokyo, 1989: 165
[3] Zhang C S, Zhao L C, Duerig T W, Wayman C M. ScrMetall Mater, 1990; 24: 1807
[4] Piao M, Miyazaki S, Otsuka K. Mater Trans JIM, 1992;33: 346
[5] Wollants P, Roos J R, Delay L. Prog Mater Sci, 1993; 37:280
[6] Liu Y N, Favier D. Acta Mater, 2000; 48: 3489
[7] Liu Y N, Tan G S. Intermetallics, 2000; 8: 67
[8] Lin H C, Wu S K, Chou T S, Kao H P. Acta Metall Mater,1991; 39: 206
[9] Lin H C, Wu S K. Metall Trans, 1993; 24A: 293
[10] He X M, Rong L J, Yan D S, Li Y Y. Mater Sci Eng A,2004; 371: 193
[11] Otsuka K, Wayman C M. Shape Memory Materials. UK:Cambridge University Press, 1998: 79
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[7] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[10] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[11] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[12] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[13] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[14] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[15] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
No Suggested Reading articles found!