Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (7): 726-730     DOI:
Research Articles Current Issue | Archive | Adv Search |
CERAMICS PARTICULATE REINFORCED Mg65Cu20Zn5Y10 BULK METALLIC GLASS COMPOSITES
XU Yingkun; XU Jian
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

XU Yingkun; XU Jian. CERAMICS PARTICULATE REINFORCED Mg65Cu20Zn5Y10 BULK METALLIC GLASS COMPOSITES. Acta Metall Sin, 2004, 40(7): 726-730 .

Download:  PDF(1953KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Ceramic particles of SiC (10%) or TiB2 (15%) (volume fraction) were added in the Mg65Cu20Zn5Y10 bulk metallic glass forming alloy to form the bulk metallic glass composites using copper mold casting. The introduced particles have no adverse effect on the glass forming ability of the matrix alloy. The second phase ceramic particles uniformly disperse in the glass matrix. Uniaxial compressive strength of the composites reached about 1 GPa, a factor of 1.2 higher than the Mg65Cu20Zn5Y10 monolithic glass. The failure for the Mg65Cu20Zn5Y10 monolithic glass occurs at a stage of elastic strain without any visible plastic strain before the fracture. In contrast, a plastic strain to failure about 0.9% was obtained for the TiB2 particulate reinforced composite.
Key words:  Mg based alloy      metallic glass      composite      
Received:  15 July 2003     
ZTFLH:  TB333  
  TG113.25  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I7/726

[1] Johnson W L. Mater Res Soc Bull, 1999; 24(10) : 42
[2] Inoue A. Acta Mater, 2000; 48: 279
[3] Bruck H A, Christman T, Rosakis A J, Johnson W L. ScrMatall Mater, 1994; 30: 429
[4] Bruck H A, Rosakis A J, Johnson W L. J Mater Res, 1996;11: 503
[5] Choi-Yim H. Appl Phys Lett, 1997; 71: 3808
[6] Conner R D, Choi-Yim H, Johnson W L. J Mater Res,1999; 14: 3292
[7] Choi-Yim H, Bush R, Koster U, Johnson W L. ActaMater, 1999; 47: 2455
[8] Kato H, Inoue A. Mater Trans JIM, 1997; 38: 793
[9] Kato H, Hirano T, Matsuo A, Kawamura Y, Inoue A. ScrMater, 2002; 43: 503
[10] Zhang W, Ishihara S, Inoue A. Mater Trans, 2002; 43:1767
[11] Inoue A, Kato A, Zhang T, Kim S G, Masumoto T. MaterTrans JIM, 1991; 32: 609
[12] Kang H G, Park E S, Kim W T, Kim D H, Cho. H K.Mater Trans JIM, 2000; 41: 846
[13] Men H, Hu Z Q, Xu J. Scr Mater, 2002; 46: 699
[14] Amiya K, Inoue A. Mater Trans JIM, 2000; 41: 1460
[15] Choi-Yim H, Bush R, Johnson W L. J Appl Phys, 1998;83: 7993
[16] Ma C, Inoue A. Mater Trans, 2002; 43: 3266
[17] Flores K M, Dauskardt R H. J Mater Res, 1999; 14: 638
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[3] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[4] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[5] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[6] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[7] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[8] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[9] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
[10] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[11] FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. 金属学报, 2022, 58(11): 1416-1426.
[12] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[13] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[14] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[15] LI Wenya, ZHANG Zhengmao, XU Yaxin, SONG Zhiguo, YIN Shuo. Research Progress of Cold Sprayed Ni and Ni-Based Composite Coatings: A Review[J]. 金属学报, 2022, 58(1): 1-16.
No Suggested Reading articles found!