Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (2): 179-184     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effect of Mn and V on Hot Corrosion of TiAl Alloy
JIN Guangxi; QIAO Lijie; GAO Kewei; KIMURA Takashi; HASHIMOTO Kenki$
Cite this article: 

JIN Guangxi; QIAO Lijie; GAO Kewei; KIMURA Takashi; HASHIMOTO Kenki$. Effect of Mn and V on Hot Corrosion of TiAl Alloy. Acta Metall Sin, 2004, 40(2): 179-184 .

Download:  PDF(12292KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of Mn and V on hot corrosion of TiAl in (Na, K)2SO4 melt at 900 ℃ has been investigated. The results show that there is a little effect of Mn on hot-corrosion resistance and the scale structure of TiAl alloy. TiAl and TiAl-Mn alloys have a low hot-corrosion rate because the outer layer of the scale is mainly protective Al2O3. Adding V, however, could change the structure of the scale, and then increased hot corrosion rate of the TiAl and TiAl-Mn alloys by one order of magnitude. For TiAl-V and TiAl-Mn-V alloys, the scale is mainly TiO2, and minor Al2O3 and V2O5. V2O5 can induce cyclic acidic dissolution of Al2O3. As a result, the scale of the TiAl-V and TiAl-Mn-V alloys peeled off locally at the early stage of hot corrosion, and the alloys have a large hot-corrosion rate.
Key words:  TiAl intermetallic compound      hot corrosion      Mn      V      
Received:  10 April 2003     
ZTFLH:  TG146.2  
  TG172.62  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I2/179

[1] Simons E L, Browning G V, Liebhafsky H A. Corrosion, 1955; 11: 505
[2] Rahmel A, Spencer F J. Oxid Met, 1991; 33: 53
[3] Taniguchi S. Mater Corros, 1997: 48: 1
[4] Jung H G. Jung D J, Kim K Y. Surf Coat Technol, 2002; 154: 75
[5] Yao Z, Marck M. Mater Sci Eng, 1995: A192/193: 994
[6] Nicholls J R, Legget T, Andrews P. Mater Corrs, 1997: 48: 56
[7] Tang Z L, Wang F H, Wu W T. Oxid Met, 1999; 51: 314
[8] Hara M, Hieda D, Hinata Y. J Jpn Inst Met. 1999; 63: 1238(原基,稗田大辅,日向幸昌.日本金属学会志,1999; 63:1238)
[9] Huang S C, Hall E L, Shih D S. ISIJ Int, 1991; 31: 1100
[10] Huang S C, Hall E L. Acta Metall Mater, 1991; 39: 1053
[11] Zeng C L, Zhang J Q. Corros Sci Protect Technique, 1995; 7: 29(曾潮流,张鉴清.腐蚀科学与防护技术,1995;7:29)
[12] Yoshioka T, Narita T. Corros Eng, 1996; 45: 749
[13] Jose P D, Gupta D K, Rapp A. J Electrochem Soc, 1985; 132: 735
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[13] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[14] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[15] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
No Suggested Reading articles found!