Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (1): 8-13     DOI:
Research Articles Current Issue | Archive | Adv Search |
Cellular Automaton Modelling Of The Transformation From Austenite to Ferrite In Low Carbon Steels During Continuous Cooling
ZHANG Lin; ZHANG Caibei; WANG Yuanming;WANG Shaoqing
Shenyang National Laboratory for Materials Science;Institute of Metal Research; The Chinese Academic of Sciences
Cite this article: 

ZHANG Lin; ZHANG Caibei; WANG Yuanming; WANG Shaoqing. Cellular Automaton Modelling Of The Transformation From Austenite to Ferrite In Low Carbon Steels During Continuous Cooling. Acta Metall Sin, 2004, 40(1): 8-13 .

Download:  PDF(260KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A two--dimensional cellular automaton model is developed to simulate the transformation from austenite to ferrite in low carbon steels during continuous cooling.The model, with a local rule--based scheme involving nucleation and growth of ferrite,incorporates the change of the solute field into a nucleation or growth function whichis utilized by the automaton in a probabilistic fashion. The competition betweennucleation and growth of ferrite is described by the changes of a nucleationprobability and a growth probability in this cellular automaton lattice. The procedureof this cellular automaton modelling is generalized, and the effect of coolingconditions on this transformation is also discussed.
Key words:  phase transformation      computer simulation      low carbon steel      
Received:  04 March 2003     
ZTFLH:  TG111.5  
  TG142.31  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I1/8

[1] Wolfram S. Rev Modell Phys, 1983; 55:601
[2] Lepinoux J, Kubin L P. Scr Metall, 1987; 21:833
[3] Rappaz M, Gandin C A. Acta Metall.Mater, 1993; 41; 345
[4] Goetz R L, Seetharman V. Metall Mater Trans, 1998; 22A: 2307
[5] Zhang L, Wang Y M, Zhang C B. Acta Metall Sin, 2001; 37:882(张林,王元明,张彩碚.金属学报,2001;37:882)
[6] Zhang L, Zhang C B, Liu X H, Wang G D, Wang Y M. J Mater Sci Technol, 2002; 18:163
[7] Umemoto M, Ohtsuka H, Tamura I. J Mater Sci Technol, 1987; 3:249
[8] Hawbolt E B, Chau B, Brimacombe J K. Metall Trans,1983; 14A: 1803
[9] Enomoto M, Aaronson H I. Metall Trans, 1986; 17A: 1381
[10] Militzer M, Pandi R, Hawbolt E B. Metall Mater Trans, 1996; 27A: 1547
[11] Jacot A, Rappaz M. Acta Mater, 1997; 45:575
[12] Zhang L, Zhang C B, Wang Y M, Liu X H, Wang G D. Mater Res, 2002; 17:2251
[13] Zhang L, Wang Y M, Zhang C B, Wang S Q, Ye H Q. Modelling Simu Mater Sci Technol, 2003; 11:791
[14] Zhang L, Zhang C B, Wang Y M, Wang S Q, Ye H Q. Acta Mater, 2003; 51:55193
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[6] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[9] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[10] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[11] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[12] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[13] ZHU Weiqiang, YU Muzhi, TANG Xu, CHEN Xiaoyang, XU Zhengbing, ZENG Jianmin. Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy[J]. 金属学报, 2020, 56(11): 1485-1494.
[14] Canshuai LIU,Zhaohui TIAN,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN. Corrosion Behaivour of X65 Low Carbon Steel During Redox State Transition Process of High LevelNuclear Waste Disposal[J]. 金属学报, 2019, 55(7): 849-858.
[15] Chen GU, Ping YANG, Weimin MAO. The Influence of Rolling Process on the Microstructure, Texture and Magnetic Properties of Low Grades Non-Oriented Electrical Steel After Phase Transformation Annealing[J]. 金属学报, 2019, 55(2): 181-190.
No Suggested Reading articles found!