Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (1): 46-50     DOI:
Research Articles Current Issue | Archive | Adv Search |
Transformation And Deformation Characteristics Of Ti49.4ni50.6 Superelastic Spring
HE Zhirong; ZHANG Yonghong;WANG Yongshan
State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University
Cite this article: 

HE Zhirong; ZHANG Yonghong; WANG Yongshan. Transformation And Deformation Characteristics Of Ti49.4ni50.6 Superelastic Spring. Acta Metall Sin, 2004, 40(1): 46-50 .

Download:  PDF(179KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Effects of the annealing and deforming temperatures, thermal cycle, and the stress--strain cycle on the transformation and deformation characteristics of Ti49.4Ni50.6 superelastic (SE) coil spring have been investigated by means of differential scanning calorimetry, tensile test, and stress--strain cycling test. The phase--transformed type of the cold worked plus intermediate temperature annealed TiNi alloy is parent phase B2 rightleftharpoons R phase rightleftharpoons martensite B19'during cooling rightleftharpoons heating cycle. The martensitic transformationtemperatures increase and the R--phase transformationtemperatures decrease with increasing the annealingtemperature. The SE property can be obtained at roomtemperature for the 623---773 K annealing Ti49.4Ni50.6alloy spring, and the rigidity of the SE spring increaseswith increasing the deformed temperature. The SE propertyof Ti49.4Ni50.6alloy spring weakens while theannealed temperature is over 823 K. The smaller the takenshear strain, the higher the strain recovery rate ofTiNi SE spring is during the thermal cycle. The priorcyclic training can enhance the SE stability of TiNi
Key words:  TiNi      shape memory alloy      superelastic spring      
Received:  24 December 2002     
ZTFLH:  TG113.25  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I1/46

[1] Miyazaki S, Ohmi Y, Otsuka K, Suzuki Y. J Phys Colloq, 1982; 43(C4) : 255
[2] Sehitoglu H, Jun J, Zhang X, Karaman I, Chumlyakov Y, Maier H J, Gall K. Acta Mater, 2001; 49:3609
[3] Liu Y, Galvin S P. Acta Mater, 1997; 45:4431
[4] Miyazaki S, Imai T, Igo Y, Otsuka K. Metall Trans, 1986; 17A: 115
[5] Huang X, Liu Y. Scr Mater, 2001; 45:153
[6] Vaidynathan R, Bourke M A M, Dunand D C. Metall Mater Trans, 2001; 32A: 777
[7] McKelvey A L, Ritchie R O. Metall Mater Trans, 2001; 32A: 731
[8] Todoroki T. J Jpn Inst Met, 1985; 49:439(轰恒彦.日本金属学会会志, 1985;49:439)
[9] Todoroki T, Tamura H. J Jpn Inst Met, 1986; 50:538(轰恒彦,田村裕一.日本金属学会会志,1986;50:538)
[10] He Z R, Zhang Y H, Xie N S, Liu C. Chin J Nonferr Met, 1998; 8 (Supp.1) : 218(贺志荣,张永宏,解念锁,刘琛.中国有色金属学报,1998;8(增刊1) :218)
[11] He Z R, Zhang Y H. Trans Met Heat Treat, 1999; 20 (3) : 31(贺志荣,张永宏.金属热处理学报,1999;20(3) :31)
[12] Otsuka K, Wayman C M. Shape Memory Materials. Cambridge: Cambridge University Press, 1998:49
[13] Otsuka K, Ren X. Mater Sci Eng, 1999; A273-275:89
[14] Miyazaki S, Otsuka K. Metall Trans, 1986; 17A: 53f
[1] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[2] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[3] ZHANG Xin, CUI Bo, SUN Bin, ZHAO Xu, ZHANG Xin, LIU Qingsuo, DONG Zhizhong. Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy[J]. 金属学报, 2022, 58(8): 1065-1071.
[4] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Lüders-Like Deformation and Stress Transfer Behavior in an In Situ NiTi-NbTi Composite[J]. 金属学报, 2021, 57(7): 921-927.
[5] YE Junjie, HE Zhirong, ZHANG Kungang, DU Yuqing. Effect of Ageing on Microsturcture, Tensile Properties, and Shape Memory Behaviors of Ti-50.8Ni-0.1Zr Shape Memory Alloy[J]. 金属学报, 2021, 57(6): 717-724.
[6] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[7] XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. 金属学报, 2021, 57(1): 29-41.
[8] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[9] Jiangang NIU, Wei XIAO. The Lattice Instability Induced by Ti-Site Ni in B2 Austenite in TiNi Alloy[J]. 金属学报, 2019, 55(2): 267-273.
[10] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
[11] Zhirong HE, Peize WU, Kangkai LIU, Hui FENG, Yuqing DU, Rongyao JI. Microstructure, Phase Transformation and Shape Memory Behavior of Chilled Ti-47Ni Alloy Ribbons[J]. 金属学报, 2018, 54(8): 1157-1164.
[12] Jing BAI,Ze LI,Zhen WAN,Xiang ZHAO. A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys[J]. 金属学报, 2017, 53(1): 83-89.
[13] Zhe LI,Chen XU,Kun XU,Hao WANG,Yuanlei ZHANG,Chao JING. STUDY OF MARTENSITIC TRANSFORMATION AND STRAIN BEHAVIOR IN Ni50-xCoxMn39Sn11 (x=0, 2, 4, 6) HEUSLER ALLOYS[J]. 金属学报, 2015, 51(8): 1010-1016.
[14] ZHANG Chengyan, SONG Fan, WANG Shanling, PENG Huabei, WEN Yuhua. EFFECT MECHANISM OF Mn CONTENTS ON SHAPE MEMORY OF Fe-Mn-Si-Cr-Ni ALLOYS[J]. 金属学报, 2015, 51(2): 201-208.
[15] CHEN Feng, SU Dexi, TONG Yunxiang, NIU Liqun,WANG Haibo, LI Li. MICROSTRUCTURE AND PHASE TRANSFORMATION OF Ni43Co7Mn41Sn9 HIGH TEMPERATURE SHAPE MEMORY ALLOY RIBBON[J]. 金属学报, 2013, 49(8): 976-980.
No Suggested Reading articles found!