Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (3): 242-248    DOI:
Current Issue | Archive | Adv Search |
MACROSCOPIC RESPONSE AND MICROSCOPIC MECHANISM OF ZIRCALOY-4 UNDER NONPROPORTIONAL LOADING
XIAO Lin(State Key Laboratory for Mechanical Behaviour of Materials; Xi'an Jiaotong University; Xi'an 710049)KUANG Zhenbang(Department of Engineering Mechanics; Shanghai Jiaotong University; Shanghai 200030)
Cite this article: 

XIAO Lin(State Key Laboratory for Mechanical Behaviour of Materials; Xi'an Jiaotong University; Xi'an 710049)KUANG Zhenbang(Department of Engineering Mechanics; Shanghai Jiaotong University; Shanghai 200030). MACROSCOPIC RESPONSE AND MICROSCOPIC MECHANISM OF ZIRCALOY-4 UNDER NONPROPORTIONAL LOADING. Acta Metall Sin, 1998, 34(3): 242-248.

Download:  PDF(2262KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Monotonic and cyclic plastic deformation behaviour and microscopic mechanism of zircaloy-4 under biaxial tension loading along different loading paths were investigated. The results show that an obvious stress delay appears in comparison with the strain increment vector after the turning point of a strain path. The equivalent stress suddenly drops then increases, and the firstly softening and subsequently haxdening degrees are related to the turning angle values,the path length and turning direction. Therefore, the influence of the deformation history and the coupled effects among strain components on the response can not be neglected. By TEM, the deformed dislocation configurations are parallel dislocation lines in uniaxial tension with constraint condition, a lot of free dislocation lines between channeals in double-triangle, and embryonic cells in elliptical and circular loading, respectively. The correlation between macroscopic deformation behaviour and microscopic deformation structure is discussed, finally.
Key words:  zircaloy-4      nonproportional loading      constitutive equation      microscopic mechanism      dislocation structure     
Received:  18 March 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I3/242

1 著,吕允文,高绣雯译核工程材料北京:原子能出版社,1987write, Lu Yunwen, Gao Xiuwen translate. Materiais in NuclearEngineeriny. Beijing: Atom Publisher, 1987)
2肖林.复合加载下材料塑性变形行为及其微观机理西安交通大学博士后研究报告,1996(Xiao Lin. Plastic Deformation Behavior and Mcroscopic Mechanism of Materials Under Combined Loading. Postdoctor Thesis, Xi'an Jiaotong University, 1996)
3 Valanis K C. Areh Mech, 1980; 32:171
4 Xiao Lin, Kuang Zhenbang. Acta Maten 1996; 44: 3059
5 Doong S H, Socie D F, Robertson I M. ASME J Eng Mater Technol, 1990; 112: 456
6 McDowell D L. J Mech Phys Solids, 1985; 33: 559
7 Doong S H, Socie D F. ASME i Eny Mater Technol, 1991; 113: 23
8 肖林. 中国钼业,1997; 21: 30(Xiao Lin. Chin Molybdenum Ind, 1997; 21: 30)
9 Xiao Lin, Gu Haicheng, Kuang Zhenbang. Acta Metall Sin (Engl Lett), 1995; 8: 219
10 Xiso Lin, Gu Haicheng. Scr Metall Mater, 1994; 30: 175
11 Xiso Lin, Gu Haicheng. Metall Mater Trans, 1997; 28A: 1021
12 Miura S, Umeda K. Scr Metall, 1973; 7: 337
[1] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[4] ZHAO Manman, QIN Sen, FENG Jie, DAI Yongjuan, GUO Dong. Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel[J]. 金属学报, 2020, 56(7): 960-968.
[5] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[6] Bolü XIAO, Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA. Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites[J]. 金属学报, 2019, 55(1): 59-72.
[7] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[8] Weiwei GUO,Chengjun QI,Xiaowu LI. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN CONJUGATE AND CRITICAL DOUBLE-SLIP-ORIENTED Cu SINGLE CRYSTALS[J]. 金属学报, 2016, 52(6): 761-768.
[9] Xiaoyun YUAN, Liqing CHEN. HOT DEFORMATION AT ELEVATED TEMPERATURE AND RECRYSTALLIZATION BEHAVIOR OF A HIGH MANGANESE AUSTENITIC TWIP STEEL[J]. 金属学报, 2015, 51(6): 651-658.
[10] LI Junru, GONG Chen, CHEN Lie, ZUO Hui, LIU Yazheng. HOT DEFORMATION BEHAVIOR OF BLADES STEEL 10Cr12Ni3Mo2VN FOR ULTRA- SUPERCRITICAL UNITS[J]. 金属学报, 2014, 50(9): 1063-1070.
[11] FU Mingjie, HAN Xiuquan, WU Wei, ZHANG Jianwei. SUPERPLASTICITY RESEARCH OF Ti-23Al-17Nb ALLOY SHEET[J]. 金属学报, 2014, 50(8): 955-961.
[12] YAN Ying, LU Meng, LI Xiaowu. EFFECTS OF PRE-FATIGUE DEFORMATION ON THE  UNIAXIAL TENSILE BEHAVIOR OF COARSEGRAINED PURE Al[J]. 金属学报, 2013, 49(6): 658-666.
[13] GUO Weiwei, QI Chengjun, LI Xiaowu. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN A DOUBLE-SLIPORIENTED Cu SINGLE CRYSTAL[J]. 金属学报, 2013, 49(1): 107-114.
[14] YU Hui KIM Youngmin YU Huashun YOU Bongsun MIN Guanghui. HOT DEFMATION BEHAVIOR AND HOT WORKABILITY OF Mg-Zn-Zr-Ce ALLOY[J]. 金属学报, 2012, 48(9): 1123-1131.
[15] ZHANG Huibo JIN Wei YANG Rui. 3D FINITE ELEMENT SIMULATION OF PULL–OUT FORCE OF TiNiFe SHAPE MEMORY PIPE COUPLING WITH INNER CONVEX[J]. 金属学报, 2012, 48(12): 1520-1524.
No Suggested Reading articles found!