Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1520-1524    DOI: 10.3724/SP.J.1037.2012.00493
Current Issue | Archive | Adv Search |
3D FINITE ELEMENT SIMULATION OF PULL–OUT FORCE OF TiNiFe SHAPE MEMORY PIPE COUPLING WITH INNER CONVEX
ZHANG Huibo, JIN Wei, YANG Rui
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

ZHANG Huibo JIN Wei YANG Rui. 3D FINITE ELEMENT SIMULATION OF PULL–OUT FORCE OF TiNiFe SHAPE MEMORY PIPE COUPLING WITH INNER CONVEX. Acta Metall Sin, 2012, 48(12): 1520-1524.

Download:  PDF(1132KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Dimension design is a key aspect for shape memory pipe coupling, and determines the connecting strength of the connecting unit. Numerical simulation provides a theoretical basis for dimension design. In this paper, a three–dimensional constitutive model was developed to simulate the deformation and recovery process of TiNiFe shape memory pipe coupling. Finite element method is applied to simulate the stress distribution and pull–out force of the connecting units. Properties of TiNiFe alloy used in the simulation are measured from experiments. The influences of the inner convex and its height on the pull–out force are investigated. The simulated results reveal that the inner convex increases the pull–out force of the connecting units, which increases linearly with the height of the inner convex within the scope of simulations. The experimental results are in good agreement with the simulated pull–out forces with a deviation of less than 4%.

Key words:  TiNiFe      shape memory      pipe coupling      constitutive equation      finite element     
Received:  23 August 2012     
ZTFLH:  TG139.6  

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00493     OR     https://www.ams.org.cn/EN/Y2012/V48/I12/1520

[1] Otsuka K, Kakeshita T. MRS BULL, 2002; 27(2): 91

[2] Lagoudas D C. Shape Memory Alloys Modeling and Engineering Applications. New York: Springer Science Business Media, 2008: 29

[3] Wayman M, Harrison J. J Miner Met Mater Soc, 1989; 41(9): 26

[4] Schetky L. Scient Am, 1979; 241: 74

[5] Zeng P, Du H F. Forg Stam Technol, 2011; 36(1): 1

(曾攀, 杜泓飞. 锻压技术, 2011; 36(1): 1)

[6] Helm D. Int J Numer Meth Engng, 2007; 69: 1997

[7] Manach P Y, Favier D, Rio G. J Phys IV, 1996; 6(C1): 235

[8] Yan J L, Shen Y P, Chen R. Acta Mech Sin, 1998; 30: 370

(严金良, 沈亚鹏, 陈儒. 力学学报, 1998; 30: 370)

[9] Wang J, Shen Y P. J Mech Strength, 2000; 22: 275

(王健, 沈亚鹏. 机械强度, 2000; 22: 275)

[10] Brinson L C, Lammering R. Int J Solids Struct, 1993; 30: 3261

[11] Okita K, Okabe N, Satoh T, Uchida K. Inter J Moder Phy, 2006; 20B(spec.): 3951

[12] Han D, Liu F S, Li Y, Xu H B. Acta Aeronaut Astronaut Sin, 2006; 27: 703

(韩冬, 刘福顺, 李岩, 徐惠彬. 航空学报, 2006; 27: 703)

[13] Yin X Q, Gao B D, Mi X J. Chin J Rare Met, 2008; 32(5): 41

(尹向前, 高宝东, 米绪军. 稀有金属, 2008; 32(5): 41)

[14] Zhang H B, Wang J, Jin W, Yang R. Chin J Nonferrous Met, 2010; 20(s1): 510

(张慧博, 王健, 金伟, 杨锐. 中国有色金属学报, 2010; 20(s1): 510)

[15] Tanaka K. Int J Plast, 1986; 2: 59

[16] Tanaka K. Res Mech, 1986; 18: 251

[17] Liang C, Rogers C A. J Intell Mater Syst Struct, 1990; 1: 207

[18] Liang C, Rogers C A. J Eng Math, 1992; 26: 429

[19] Patoor E, Eberhardt A, Berveiller M. J Phys IV, 1996; 6(1): 277

[20] Auricchio F, Taylor R L. Comput Methods Appl Mech Eng, 1997; 143: 175

[21] Boyd J G, Lagoudas D C. Int J Plast, 1996; 12: 805

[22] Zhou B, Yoon S H. Smart Mater Struct, 2006; 15: 1967

[23] Brinson L C. J Intell Mater Syst Struct, 1993; 4: 229

[24] Zou J, Zhong W F. Acta Mech Solida Sin, 1999; 20(2): 171

(邹静, 钟伟芳. 固体力学学报, 1999; 20(2): 171)

[25] China Aeronautical Materials Handbook Editorial Board. China Aeronautical Materials Handbook Version 2, 2001

(中国航空材料手册编辑委员会. 中国航空材料手册 第二版, 2001)

[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[3] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[4] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[5] ZHANG Xin, CUI Bo, SUN Bin, ZHAO Xu, ZHANG Xin, LIU Qingsuo, DONG Zhizhong. Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy[J]. 金属学报, 2022, 58(8): 1065-1071.
[6] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[7] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[8] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Lüders-Like Deformation and Stress Transfer Behavior in an In Situ NiTi-NbTi Composite[J]. 金属学报, 2021, 57(7): 921-927.
[9] YE Junjie, HE Zhirong, ZHANG Kungang, DU Yuqing. Effect of Ageing on Microsturcture, Tensile Properties, and Shape Memory Behaviors of Ti-50.8Ni-0.1Zr Shape Memory Alloy[J]. 金属学报, 2021, 57(6): 717-724.
[10] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[11] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[12] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[13] XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. 金属学报, 2021, 57(1): 29-41.
[14] ZHAO Manman, QIN Sen, FENG Jie, DAI Yongjuan, GUO Dong. Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel[J]. 金属学报, 2020, 56(7): 960-968.
[15] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
No Suggested Reading articles found!