|
|
3D FINITE ELEMENT SIMULATION OF PULL–OUT FORCE OF TiNiFe SHAPE MEMORY PIPE COUPLING WITH INNER CONVEX |
ZHANG Huibo, JIN Wei, YANG Rui |
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 |
|
Cite this article:
ZHANG Huibo JIN Wei YANG Rui. 3D FINITE ELEMENT SIMULATION OF PULL–OUT FORCE OF TiNiFe SHAPE MEMORY PIPE COUPLING WITH INNER CONVEX. Acta Metall Sin, 2012, 48(12): 1520-1524.
|
Abstract Dimension design is a key aspect for shape memory pipe coupling, and determines the connecting strength of the connecting unit. Numerical simulation provides a theoretical basis for dimension design. In this paper, a three–dimensional constitutive model was developed to simulate the deformation and recovery process of TiNiFe shape memory pipe coupling. Finite element method is applied to simulate the stress distribution and pull–out force of the connecting units. Properties of TiNiFe alloy used in the simulation are measured from experiments. The influences of the inner convex and its height on the pull–out force are investigated. The simulated results reveal that the inner convex increases the pull–out force of the connecting units, which increases linearly with the height of the inner convex within the scope of simulations. The experimental results are in good agreement with the simulated pull–out forces with a deviation of less than 4%.
|
Received: 23 August 2012
|
|
[1] Otsuka K, Kakeshita T. MRS BULL, 2002; 27(2): 91[2] Lagoudas D C. Shape Memory Alloys Modeling and Engineering Applications. New York: Springer Science Business Media, 2008: 29[3] Wayman M, Harrison J. J Miner Met Mater Soc, 1989; 41(9): 26[4] Schetky L. Scient Am, 1979; 241: 74[5] Zeng P, Du H F. Forg Stam Technol, 2011; 36(1): 1(曾攀, 杜泓飞. 锻压技术, 2011; 36(1): 1)[6] Helm D. Int J Numer Meth Engng, 2007; 69: 1997[7] Manach P Y, Favier D, Rio G. J Phys IV, 1996; 6(C1): 235[8] Yan J L, Shen Y P, Chen R. Acta Mech Sin, 1998; 30: 370(严金良, 沈亚鹏, 陈儒. 力学学报, 1998; 30: 370)[9] Wang J, Shen Y P. J Mech Strength, 2000; 22: 275(王健, 沈亚鹏. 机械强度, 2000; 22: 275)[10] Brinson L C, Lammering R. Int J Solids Struct, 1993; 30: 3261[11] Okita K, Okabe N, Satoh T, Uchida K. Inter J Moder Phy, 2006; 20B(spec.): 3951[12] Han D, Liu F S, Li Y, Xu H B. Acta Aeronaut Astronaut Sin, 2006; 27: 703(韩冬, 刘福顺, 李岩, 徐惠彬. 航空学报, 2006; 27: 703)[13] Yin X Q, Gao B D, Mi X J. Chin J Rare Met, 2008; 32(5): 41(尹向前, 高宝东, 米绪军. 稀有金属, 2008; 32(5): 41)[14] Zhang H B, Wang J, Jin W, Yang R. Chin J Nonferrous Met, 2010; 20(s1): 510(张慧博, 王健, 金伟, 杨锐. 中国有色金属学报, 2010; 20(s1): 510)[15] Tanaka K. Int J Plast, 1986; 2: 59[16] Tanaka K. Res Mech, 1986; 18: 251[17] Liang C, Rogers C A. J Intell Mater Syst Struct, 1990; 1: 207[18] Liang C, Rogers C A. J Eng Math, 1992; 26: 429[19] Patoor E, Eberhardt A, Berveiller M. J Phys IV, 1996; 6(1): 277[20] Auricchio F, Taylor R L. Comput Methods Appl Mech Eng, 1997; 143: 175[21] Boyd J G, Lagoudas D C. Int J Plast, 1996; 12: 805[22] Zhou B, Yoon S H. Smart Mater Struct, 2006; 15: 1967[23] Brinson L C. J Intell Mater Syst Struct, 1993; 4: 229[24] Zou J, Zhong W F. Acta Mech Solida Sin, 1999; 20(2): 171(邹静, 钟伟芳. 固体力学学报, 1999; 20(2): 171)[25] China Aeronautical Materials Handbook Editorial Board. China Aeronautical Materials Handbook Version 2, 2001(中国航空材料手册编辑委员会. 中国航空材料手册 第二版, 2001) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|