Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (1): 51-56    DOI:
Current Issue | Archive | Adv Search |
FATIGUE LIVES OF GRAIN BOUNDARY AND COMPONENT CRYSTALS IN A COPPER BICRYSTAL
ZHANG Zhefeng; LI Guangyi; WANG Zhongguang; LI Shouxin (State Key Laboratory of Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)
Cite this article: 

ZHANG Zhefeng; LI Guangyi; WANG Zhongguang; LI Shouxin (State Key Laboratory of Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). FATIGUE LIVES OF GRAIN BOUNDARY AND COMPONENT CRYSTALS IN A COPPER BICRYSTAL. Acta Metall Sin, 1998, 34(1): 51-56.

Download:  PDF(2367KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Cyclic tension-tension deformation was carried out on a copper bicrystal which consists of a single and a double slip oriented component crystal. The grain boundary of the bicrystal is nearly perpendicular to the stress axis during cyclic deformation. The S-N curves of grain boundary and component crystals were respectively determined. By comparison of fatigue lives between component crystals and grain boundary, it was found that the fatigue lives of grain boundary were lower than those of component crystals, however, the fatigue lives of two component crystals showed no obvious difference under the same cyclic stress. Surface observation by SEM indicated that the probability of initiating fatigue cracks in copper bicrystal increased in the order of double, single slip oriented component crystals and grain boundary under the same cyclic load amplitude.
Key words:  copper bicrystal      fatigue life      S-N curve      crack initiation     
Received:  18 January 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I1/51

1 Wood W A.Philos Mag,1958;3:692
2 Cottrell A H, Hull D. Proc R Soc London,1957;A242:211
3 Tanaka K,Mura T J Appl Mech.1981; 48:97
4 Gueroa J C,Laird C.Mater Sci Eng,1983;60A:45
5 Kim W H,Laird C Acta Metall,1978; 26:777
6 Lim L C Acta Metall,1987;35:1653
7 Mughrabi Herz K,Stark X.Int J Fract,1981;17:193
8 Boettner R C,McEvily A J,Liu Y C Philos Mag, 1964;10:95
9 Essmann U,Gosele U,Mughrabi H.Philos Mag,1981,44:406
10 Ma B-T,Laird C. Acta Metall;1989;37:325
11 Hunsche A, Neumenn P Acta Metall.1986;34:207
12 Laird C.MaLer Sci Eng.1976 22:231
13 Kettunen P,Philos Mag,1966;14: 421]
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[3] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[4] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[5] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[6] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[7] Zhengkai WU, Shengchuan WU, Jie ZHANG, Zhe SONG, Yanan HU, Guozheng KANG, Haiou ZHANG. Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. 金属学报, 2019, 55(7): 811-820.
[8] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[9] Zhe SONG, Shengchuan WU, Yanan HU, Guozheng KANG, Yanan FU, Tiqiao XIAO. The Influence of Metallurgical Pores on Fatigue Behaviors of Fusion Welded AA7020 Joints[J]. 金属学报, 2018, 54(8): 1131-1140.
[10] Li WANG,Zhongjiao ZHOU,Shaohua ZHANG,Xiangdong JIANG,Langhong LOU,Jian ZHANG. CRACK INITIATION AND PROPAGATION AROUND HOLES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY DURING THERMAL FATIGUE CYCLE[J]. 金属学报, 2015, 51(10): 1273-1278.
[11] CHE Xin, LIANG Xingkui, CHEN Lili, CHEN Lijia, LI Feng. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY[J]. 金属学报, 2014, 50(9): 1046-1054.
[12] YU Long, SONG Xiping, ZHANG Min, LI Hongliang, JIAO Zehui, YU Huichen. CRACK INITIATION AND PROPAGATION OF HIGH Nb-CONTAINING TiAl ALLOY IN FATIGUE-CREEP INTERACTION[J]. 金属学报, 2014, 50(10): 1253-1259.
[13] XIONG Ying CHENG Lixia . MULTIAXIAL FATIGUE LIFE PREDICTION FOR EXTRUDED AZ31B MAGNESIUM ALLOY[J]. 金属学报, 2012, 48(12): 1446-1452.
[14] WANG Zhiying WANG Jianqiu HAN En–hou KE Wei YAN Maocheng ZHANG Junwei LIU Chuwei . STRESS CORROSION CRACK INITIATION BEHAVIOR FOR THE X70 PIPELINE STEEL BENEATH A DISBONDED COATING[J]. 金属学报, 2012, 48(10): 1267-1272.
[15] XIE Jijia HONG Youshi. EXPERIMENTAL INVESTIGATION ON FATIGUE BEHAVIOR OF NANOCRYSTALLINE NICKEL[J]. 金属学报, 2009, 45(7): 844-848.
No Suggested Reading articles found!