Please wait a minute...
Acta Metall Sin  1997, Vol. 33 Issue (5): 499-503    DOI:
Current Issue | Archive | Adv Search |
TENSILE PROPERTIES OF ALLOY ZA27 AT ELEVATED TEMPERATURES
ZHU Yuefeng (Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015); ZENG Daben; HUANG Huisong; WU Dehai (Tsinghua University; Beijing 100084)
Cite this article: 

ZHU Yuefeng (Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015); ZENG Daben; HUANG Huisong; WU Dehai (Tsinghua University; Beijing 100084). TENSILE PROPERTIES OF ALLOY ZA27 AT ELEVATED TEMPERATURES. Acta Metall Sin, 1997, 33(5): 499-503.

Download:  PDF(2007KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The tensile properties of alloy ZA27 at ambient temperature and elevated(from 275℃ through the solidus) temperatures were studied. The tress-strain plots at varies temperatures and the relationship between the mechanical properties of the alloy and temperatures are obtained. The results show that, the strength decreases with increasing temperature, the alloy exhibits high deformation ability at elevated temperatures, and the fracture modes are dependent on temperature. At about 275℃, alloy ZA27 has high plasticity and very small resistance to deformation, so it is suitable for the alloy to be processed by deformation at this temperature range.
Key words:  alloy ZA27      mechanical property at elevated temperature      fracture     
Received:  18 May 1997     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1997/V33/I5/499

1 Gervais E,Levert H,Bess M.Trans Am Foundrymen's 1980;88:183
2Barber M J,Jones P E.Foundry Trade J,1980;148:114
3 Birch J.Mater Des,1990;11(2):83
4久保田耕平,二宫隆二,佐藤勉,尾城武司.铸物,1992;64:765
5曾松岩,段守坤,蒋祖龄,李庆春,孙阳.铸造技术,1991;(5):20
6李振镳.特种铸造及有色合金,1985;(2):10
7Walmag G,Lamberigts M,Coutsouradis D,洛阳工学院耐磨材料研究室译.第25届国际冶金年会译文选.北京:机械工业出版社,1992:9b
[1] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[2] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[3] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[4] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[5] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[6] FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. 金属学报, 2022, 58(11): 1427-1440.
[7] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[9] YANG Jie, WANG Lei. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. 金属学报, 2020, 56(6): 840-848.
[10] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[11] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
[12] ZHU Jian, ZHANG Zhihao, XIE Jianxin. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. 金属学报, 2020, 56(12): 1592-1604.
[13] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[14] Li ZHOU,Pengfei ZHANG,Quanzhao WANG,Bolü XIAO,Zongyi MA,Tao YU. Multi-Scale Study on the Fracture Behavior of Hot Compression B4C/6061Al Composite[J]. 金属学报, 2019, 55(7): 911-918.
[15] JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy[J]. 金属学报, 2019, 55(12): 1561-1568.
No Suggested Reading articles found!