Please wait a minute...
Acta Metall Sin  1997, Vol. 33 Issue (11): 1171-1181    DOI:
Current Issue | Archive | Adv Search |
THERMAL ACTIVATION PARAMETERS OF TENSILE DEFORMATION OF GAMMA TITANIUM ALUMINIDE
WANG Yu;LIN Dongliang(The Public Laboralory of State Education Commission for High Temperature Materials and High Temperature Tests; Shanghai Jiaotong University; Shanghai 200030); C.C. Law(Materials and Mechanics Engineering; United Technologies Coporalion-Pratt & Whitney; East Hartford; CT 06I08; USA)
Cite this article: 

WANG Yu;LIN Dongliang(The Public Laboralory of State Education Commission for High Temperature Materials and High Temperature Tests; Shanghai Jiaotong University; Shanghai 200030); C.C. Law(Materials and Mechanics Engineering; United Technologies Coporalion-Pratt & Whitney; East Hartford; CT 06I08; USA). THERMAL ACTIVATION PARAMETERS OF TENSILE DEFORMATION OF GAMMA TITANIUM ALUMINIDE. Acta Metall Sin, 1997, 33(11): 1171-1181.

Download:  PDF(1721KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Thermal activation volume V, activation enthalpy △H, activation free enthalpy △G and activation entropy △S of tensile deformation of a gamma titanium aluminide have been measured in a temperature range from low temperature(285 K) to 1273 K. The γ-TiAl has a chemical composition of Ti-47Al-2Mn-2Nb-0.8TiB2 and a microstructure of near lamellar, and the measurement was conducted at yield points. From the values and their temperature dependence of the measured activation parameters, as well as the temperature dependence of yield stress,the dislocation mechanisms of tensile deformation of the alloy have been speculated.It is found that there exist three temperature regions,which correspond to different possible thermal activation mechanisms of dislocation motion. In low temperature region(285-398K), the mechanism is mainly characterized by the overcoming of Peierls-Nabarro resistence. In intermediate temperature region(523-873K), the mechanism is a weak thermally activated process as the plastic flow is neither sensitive to temperature nor to the strain rate.In high temperature region(≥973 K), the rate controlling machanism is dislocation climbing.In addition,it is found that,activation entropy △S, whose variation with temperature is similar to that of activation volume V, also reflects the thermal activation mechanism of dislocation movement in some degree.
Key words:  intermetallics      gamma titanium aluminide      tensile deformation      thermal activation      dislocation mechanism     
Received:  18 November 1997     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1997/V33/I11/1171

1KimY—W.JOM,1989;41(7):24
2KimY—W.JOM,1994;46(7):30
3YamaguchiM,InuiH.StructuralIntermetallics.Warrendale,PA:TMS,1993:127
4HuangSC,HallEL.MetallTrans,1991;A22:427
5KumpfertJ,KimY—W,DimidukDM.MaterSciEng,1995;A192/193:465
6ChanKS,KimY-WMetallTrans,1993;A24:114
7MorrisMA,LipeT.ScrMetallMater,1994;31:689
8AppelF,SparkaV,WagnerR.MaterResSocSympProc,1995;364:623
9AppelF,WagnerR.In:KimY—W,WagnerR,YamaguchMeds,GammaTitaniumAluminides,TMS,1995:231
10ViguierB,BonnevilleJ.MaterResSocSympProc,1995;364:629
11ViguierB,CieslarM.MaterResSocSympProc,1995;364:653
12ViguierB,CleslarM.In:KimY—W,WagnerR,YamaguchMeds,GammaTitaniumAluminides,TMS,1995:275
13SchoeckG.PhysStatusSolidi,1965;8:499
14SurekT,LutonMJ,JonasJJ.PhilosMag,1994;A69:105
15SchafrikRE.MetallTrans,1977;A8:1003
16GuiuF,PrattPL.PhysStatusSolid,1964;6:111
17LinDongliang,Wangyu,LawCC.MaterSciEng(A),tobePublished18EzzSS,HirschPB.PhilosMag,1994;A69:105
19ConradH.JOM,1964;16:582
20HallEQ.ProcPhysSoc,1951;B64:747
21PetchNJ.JIronSteelInst,1953;174:25
22KrollS,MehrerH,StolwijkN,HerzigC,RosenkranzR,FrommeyerG.ZMettallkd,1992;83:591
23SprengelW,OikawaN,NakajimaH.Intermetallics,1996;4:185
24王瑜,林栋梁.金属学报,1997;33:1021
25JonasJJ,LutonMJ.MetallTrans,1971;2:3492
[1] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[2] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[3] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
[4] Lin GENG, Hao WU, Xiping CUI, Guohua FAN. Recent Progress on the Fabrication of TiAl-Based Composites Sheet by Reaction Annealingof Elemental Foils[J]. 金属学报, 2018, 54(11): 1625-1636.
[5] Xuan YU, Zhihao ZHANG, Jianxin XIE. Microstructure, Ordered Structure and Warm TensileDuctility of Fe-6.5%Si Alloy with Various Ce Content[J]. 金属学报, 2017, 53(8): 927-936.
[6] Li ZHOU,Chao CUI,Qing JIA,Yingshi MA. Experimental and Finite Element Simulation of Milling Process for γ-TiAl Intermetallics[J]. 金属学报, 2017, 53(4): 505-512.
[7] Jihou LIU,Hongyun ZHAO,Zhuolin LI,Xiaoguo SONG,Hongjie DONG,Yixuan ZHAO,Jicai FENG. Microstructures and Mechanical Properties of Cu/Sn/Cu Structure Ultrasonic-TLP Joint[J]. 金属学报, 2017, 53(2): 227-232.
[8] Guotian WANG, Hongsheng DING, Ruirun CHEN, Jingjie GUO, Hengzhi FU. Effect of Current Intensity on Microstructure of Ni3Al Intermetallics Prepared by Directional Solidification Electromagnetic Cold Crucible Technique[J]. 金属学报, 2017, 53(11): 1461-1468.
[9] Tong LIU,Liangshun LUO,Yanning ZHANG,Yanqing SU,Jingjie GUO,Hengzhi FU. MICROSTRUCTURE EVOLUTION AND GROWTH BEHAVIORS OF FACETED PHASE IN DIRECTIONALLYSOLIDIFIED Al-Y ALLOYS II. Microstructure Evolution of Directionally Solidified Al-53%Y Peritectic Alloy[J]. 金属学报, 2016, 52(7): 866-874.
[10] PENG Yingbo, CHEN Feng, WANG Minzhi, SU Xiang, CHEN Guang. RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti-45Al-8Nb ALLOY[J]. 金属学报, 2013, 49(11): 1457-1461.
[11] LU Fayun, YANG Ping, MENG Li, WANG Huizhen. MICROSTRUCTURE, MECHANICAL PROPERTIES AND CRYSTALLOGRAPHY ANALYSIS OF Fe-22Mn TRIP/TWIP STEEL AFTER TENSILE DEFORMATION[J]. 金属学报, 2013, 49(1): 1-9.
[12] XIONG Chao MA Yingche CHEN Bo LIU Kui LI Yiyi. WATER MODELING OF MOULD FILLING DURING SUCTION CASTING PROCESS OF AUTOMOTIVE EXHAUST VALVES OF γ-TiAl BASED ALLOYS[J]. 金属学报, 2011, 47(11): 1408-1417.
[13] LIANG Yongchun GUO Jianting; SHENG Liyuan; ZHOU Lanzhang. EFFECTS OF RARE EARTH ELEMENT Gd ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NiAl-Cr(Mo)-Hf EUTECTIC ALLOY[J]. 金属学报, 2010, 46(5): 528-532.
[14] ZHOU Minbo LI Xunping MA Xiao ZHANG Xinping. EARLY INTERFACIAL REACTION AND UNDERCOOLING SOLIDIFICATION BEHAVIOR  OF Sn-3.5Ag/Cu SYSTEM[J]. 金属学报, 2010, 46(5): 569-574.
[15] ZHOU Dianwu XU Shaohua ZHANG Fuquan PENG Ping LIU Jinshui. FIRST-PRINCIPLES CALCULATIONS OF STRUCTURAL STABILITIES AND ELASTIC PROPERTIES OF AB2 TYPE INTERMETALLICS IN ZA62 MAGNESIUM ALLOY[J]. 金属学报, 2010, 46(1): 97-103.
No Suggested Reading articles found!