Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (8): 810-816    DOI:
Current Issue | Archive | Adv Search |
MICROSTRUCTURAL CHARACTERISTICS OF TRANSITION ZONE IN Al-BASED COMPOSITE/STAINLESS STEEL FRICTION JOINT
PAN Chunxu(Wuhan Transportation University;Wuhan 430063); HU Lunji (Huazhong University of Science and Technology; Wuhan 430074); Z. L. LI; T H.NORTH (University of Toronto; Canada)(Manuscript received 1995-11-07; in revised form 1996-03-08)
Cite this article: 

PAN Chunxu(Wuhan Transportation University;Wuhan 430063); HU Lunji (Huazhong University of Science and Technology; Wuhan 430074); Z. L. LI; T H.NORTH (University of Toronto; Canada)(Manuscript received 1995-11-07; in revised form 1996-03-08). MICROSTRUCTURAL CHARACTERISTICS OF TRANSITION ZONE IN Al-BASED COMPOSITE/STAINLESS STEEL FRICTION JOINT. Acta Metall Sin, 1996, 32(8): 810-816.

Download:  PDF(627KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructural variations of the transition zone in the friction joints of Al-base composite with austenitic stainless steel were studied systematically. The scanning electron microscopy (SEM) observations found that the plastic deformation can be obviously caused in the side of the high strength stainless steel during the friction welding. The deformation characteristics and mechanism are different in the different parts along the weld interface. Transmission electron microscopy (TEM) observations found that the transition zone is composed of a micro-crystalline oxide Fe(Al,Cr)2O4 or FeO·(Al,Cr)2O3 layer and a FeAl3 intermetallic layer. Correspondent: PAN Chunxu,(associate professor, Laboratory of Electron Microscopy, Wuhan Transportation University, Wuhan 430063)
Key words:  friction welding      electron microscopy      aluminium-based composite      stainless steel     
Received:  18 August 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I8/810

1ElliottS,WallachER,MetConstr,1981;3:2212ChernenkoIA.WeldResInt,1989;(7):5863BP著,王义衡,赵瑞湘译.铝及铝合金与其它金属的焊接.北京:宇航出版社,1990:1584SChwartzMM著,袁文钊,侯玉年,王世望译.金属焊接手册.北京:国防工业出版社,1988:1865有年雅敏,冲田耕三,圆城敏男,池内建三.溶接学会论文集,1988;6:166fujiA,NorthTH,AmeyamaK,FutamataM.MaterSciTechnol,1992;8:2197LioydDJ.IntMaterRev,1994;39:18ChandraT,YuD.MaterForum,1993;17:3619潘春旭,陈冰泉,杨红霞,电子显微学报,1995;14:27910哈宽富.金属力学性质的微观理论,北京:科学出版社,1991:20511雷永平,史耀武,刘海使,段立宇.第七届全国焊接学术会议论文集(第3册),青岛,1993:7112BedfordGM,BousteadJ.JMaterSci,1987;13:253
[1] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[2] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[3] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[4] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[7] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[8] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[9] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[10] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[11] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[12] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[13] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[14] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[15] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
No Suggested Reading articles found!