Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (7): 718-722    DOI:
Current Issue | Archive | Adv Search |
MICROSTRUCTURE FEATURES OF STAINLESS STEEL AFTER LASER SURFACE REMELTING AND SOLIDIFICATION
PAN Qingyue; LI Yanmin; HUANG Weidong; LIN Xin; DING Guolu; ZHOU Yaohe (State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072) (Manuscript received 1995-11-15)
Cite this article: 

PAN Qingyue; LI Yanmin; HUANG Weidong; LIN Xin; DING Guolu; ZHOU Yaohe (State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072) (Manuscript received 1995-11-15). MICROSTRUCTURE FEATURES OF STAINLESS STEEL AFTER LASER SURFACE REMELTING AND SOLIDIFICATION. Acta Metall Sin, 1996, 32(7): 718-722.

Download:  PDF(433KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructure features of stainless steel have changed remarkably after laser surface remelting and solidification. Light band, fine cell, cell-dendrite structure and disordered dendrite are found in the surface layer, meanwhile, the causes for their formation have been analyzed. The typical cell-to-dendrite transition is observed at the center of laser melt pool, and a detailed investigation on the transition conditions shows that the critical transition velocity determined by experiment agrees well with the prediction of recent BJT model.Correspondent: PAN Qingyue, Lab.403, Northwestern Polylechnical University, Xi'an 710072
Key words:  laser surface remelting and solidification      stainless steel      cell-to-dendrite transition     
Received:  18 July 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I7/718

1ZimmermannM,CarrardM,KurzW.ActaMetall,1989;37:33052GillSC,ZimmermannM,KurzW.ActaMetallMater,1992;40:28953GillSC,KurzW.ActaMetallMater,1993;41:35634 GremaudM,CarrardM,KurzW.ActaMetallMaler,1990;38:25875GremaudM,CarrardM,KurzW.ActaMetallMater,1991;39:14316KurzW,GilgienP.MaterSciEng,1994;A178:1717SarkissianA,KarmaA.MaterSciEng,1994;A178:1538ZimmermannM,KarmaA,CarrardM.PhyRevB,1990;42:8339陆世英,张德康.不锈钢应力腐蚀破裂,北京:科学出版社,197710 褚武扬.氢损伤和滞后断裂,北京:冶金工业出版社,198811 MudaliUK,DayalRK.JMaterEngPerform,1992;1:34112MudaliUK,DayalRK,GnamamoorthyJB,KanetkarSM,OgaleSB.MaterTransJIM,1991;33:84513 黄卫东,毛志英,周尧和.金属学报,1986;22:B24014 KurzW,FisherDJ.ActaMetall.1981;29:1115BurdenMH,HuntJD.JCrystGrowth,1974;22:21916SomboonsukK,MasonJT,TrivcdiR.MetallTrans,1984;15A:96717HoadleyAFA,RappazM,ZimmermannM.MetallTrans,1991;22B:10118BilliaB,JamgotchianH,TrivediR.JCrystGrowth,1990;106:410
[1] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[2] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[3] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[4] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[7] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[8] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[9] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[10] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[11] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[12] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[13] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[14] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[15] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
No Suggested Reading articles found!