Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (4): 373-376    DOI:
Current Issue | Archive | Adv Search |
MORPHOLOGY AND FORMATION MECHANISM OF WHITE LAYER
YANG Yeyuan; FANG Hongsheng; HUANG Weikang; ZHENG Yankang; HU Daxin(Tsinghua University; Beijing 100084) (Manuscript received 1995-07-14; in revised form 1995-10-06)
Cite this article: 

YANG Yeyuan; FANG Hongsheng; HUANG Weikang; ZHENG Yankang; HU Daxin(Tsinghua University; Beijing 100084) (Manuscript received 1995-07-14; in revised form 1995-10-06). MORPHOLOGY AND FORMATION MECHANISM OF WHITE LAYER. Acta Metall Sin, 1996, 32(4): 373-376.

Download:  PDF(373KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The morphology of white layer generated within the surface layer of the steel specimens by the impact wear has been studied by TEM. It is shown that the sub-structure of white layer consist of a complex dislocation distribution. There are lamellar, cellular,polygonal, equiaxial morphologies which lay properly below the worn surface. The different morphologies are arisen out of the inhomogenous deformation. The results confirm the deformation mechanism of white layer formation further. Correspondent: YANG Yeyuan,(postdoctoral worker,National Tribology Laboratory, Tsinghua University,Beijing 100084)
Key words:  white layer      deformation      dislocation cells     
Received:  18 April 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I4/373

1BaiYilong.ResMech,1990,31:1332GriffithsBJ.JTribol,1985;107:1653EyreTS,BaxterA.TribolInt,1972:2564NakkalilR.ActaMetallMater,1991;19:25535NewcombSB,StobbsWM,MaterSciEng,1984;66:1956TorranceAA,Wear,1978;50:1697PrasadBK,PrasadSV.Wear,1991;151:18YangYY,FangHS,ZhengYK,YangZG,JiangZL.Wear,1995;185:179胡赓祥,钱苗根,金属学.上海:上海科学技术出版社,1980:29010HeilmannP,ClarkWAT,RigneyDA.ActaMetall,1983;31:1293J
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[6] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[7] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[10] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[11] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[12] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[13] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[14] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[15] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
No Suggested Reading articles found!