Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (10): 1068-1074    DOI:
Current Issue | Archive | Adv Search |
STRUCTURAL STABILITY OF Co/C MULTILAYERS
JIANG Enyong;BAI Haili;WANG Cunda;U.BOGLI(Tianjin University;Tianjin 300072)(Department of Applied Physics;Tianjin University;Tianjin 300072)(Manuscript received 1995-12-08;in revised form 1996-06-12)
Cite this article: 

JIANG Enyong;BAI Haili;WANG Cunda;U.BOGLI(Tianjin University;Tianjin 300072)(Department of Applied Physics;Tianjin University;Tianjin 300072)(Manuscript received 1995-12-08;in revised form 1996-06-12). STRUCTURAL STABILITY OF Co/C MULTILAYERS. Acta Metall Sin, 1996, 32(10): 1068-1074.

Download:  PDF(534KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Thermal behaviours of Co/C multilayers prepared by a dual-facing-target sputtering system were studied by using X-ray diffraction,transmission electron microscopy,Raman spectroscopy,and X-ray photoelectron spectroscopy.The changes observed in the annealed Co/C multilayers include an expansion of modulation period,crystallization in the Co layers,changes of reflectivity at grazing incidence and Co-C compound formation.Below annealing temperature of 400℃,the expansion in modulation period is mainly due to the graphitization of the amorphous carbon layers,and the enhancement of the reflectance is dominantly caused by Co-C separation that is interpreted as positive enthalpy of Co-C mixing.By 500℃,the crystallization and agglomeration of Co layers induce an enormous period expansion and a serious decrease in reflectivity.A small amount of carbide is found to form at this temperature as occurred in some other annealed metal-carbon multilayer systems.
Key words:  Co/C multilayer      annealing      period expansion.     
Received:  18 October 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I10/1068

1SpillerE,StearnsDG,KrumreyMJApplPhys,1993;74:1072SpillerE,WilczynskiJ,StearnsDG,GolubL,NystromG.ApplPhysLett,1992;61:14813SpillerE.OptEng,1990;29:6094KrishnanR,GuptaHO,SellaC,KaabouchiM.JMagnMagnMater,1991;93:1745ZieglerE,LepetreY,SchullerIK,SpillerE.ApplPhysLett,1986;48:13546MiedemaAR,deChatelPF,deBeerFR.Physica,1980;B100:19317JiangZ,DupuisV,VidalB,RavetMF,PiecuchM.JApplPhys,1992,72:9318BeemanD,SilvermanJ,LyndsR,AndersonMR.PhysRev,1984,B30:8709DillonRO.WoollamJA,KatkanantV.PhysRev.1984;B29:348210DupuisV,RavetMF,TeteC,PiecuchM,LepetreY,RivoiraR,ZieglerE.JApplPhys,1990;68:514611LepetreY,ZieglerE,SchullerIK,RivoiraR.JApplPhys,1986;64:2301
[1] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[2] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[3] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[4] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[5] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[6] WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. 金属学报, 2021, 57(12): 1588-1594.
[7] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[8] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[9] Wentao LI,Zhenyu WANG,Dong ZHANG,Jianguo PAN,Peiling KE,Aiying WANG. Preparation of Ti2AlC Coating by the Combination of a Hybrid Cathode Arc/Magnetron Sputtering with Post-Annealing[J]. 金属学报, 2019, 55(5): 647-656.
[10] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
[11] Hanchen FENG,Xuegang MIN,Dasheng WEI,Lichu ZHOU,Shiyun CUI,Feng FANG. Effect of Low Temperature Annealing on Microstructure and Mechanical Properties of Ultra-Heavy Cold-DrawnPearlitic Steel Wires[J]. 金属学报, 2019, 55(5): 585-592.
[12] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[13] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[14] SHAO Yi , LI Yanmo , LIU Chenxi , YAN Zesheng , LIU Yongchang . Annealing Process Optimization of High Frequency Longitudinal Resistance Welded Low-CarbonFerritic Stainless Steel Pipe[J]. 金属学报, 2019, 55(11): 1367-1378.
[15] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
No Suggested Reading articles found!