Please wait a minute...
Acta Metall Sin  1994, Vol. 30 Issue (5): 195-199    DOI:
Current Issue | Archive | Adv Search |
CREEP-FATIGUE INTERACTION IN ALLOYS GH30 AND GH34
WANG Xiang;ZHOU Hao;KONG Qingping(Institute of Solid State Physics;Chinese Academy of Sciences;Hefei)(Manuscript received 5 October;1993; in revised form 15 November;1993)
Cite this article: 

WANG Xiang;ZHOU Hao;KONG Qingping(Institute of Solid State Physics;Chinese Academy of Sciences;Hefei)(Manuscript received 5 October;1993; in revised form 15 November;1993). CREEP-FATIGUE INTERACTION IN ALLOYS GH30 AND GH34. Acta Metall Sin, 1994, 30(5): 195-199.

Download:  PDF(359KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Two different negative interactions in alloys GH30 and GH34 were observed under prior creep followed by fatigue and under continuous cyclic creep,respectively.The exponent of the fatigue damage, for the former, in the interaction term is much large than that of the creep damage, and hence the negative interaction is mainly as a result of the sequential fatigue damage being restrained by the prior creep. While the exponent of the creep damage,for the latter, in the interaction term is much large than that of the fatigue damage, and hence as a result of creep damage being partly recovered by the fatigue (cyclic loading and unloading). The microscopic origin of the two different negative interactions has been explained in the light of microscopic observations. Correspondent: KONG Qingping, professor, Institute of Solid State Physics, Chinese Academy of Scicnces,Hefei 230031
Key words:  creep      fatigue      creep-fatigue interaction      dislocation      alloy GH30      alloyy GH34     
Received:  18 May 1994     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1994/V30/I5/195

1RaiR.FlowandFractureatElevatedTemperatures,ASM,1985:Chapt6,72OhtaniR,OhnamiM,InonsT.HighTemperatureCreep-Fatigue,Elsevier19883LagneborgR,AttermoR.MetallTrans,1971;2:18214XieXS,SunXQ,GaoL,ChenGL,ChangFY,YuanZM.In:YanMGetal.eds.Procof5thIntConfonMechanicalBehaviourofMaterials,Vol.II.Oxford:Pergamon:1987;10375ChenGL.ChinJMetSciTechnol,1990;16:3916孔庆平,王翔,周浩,倪群慧.物理学报,1986;35:10917王翔,孔庆平,佟世华,江先美,任卫平.金属学报,1988;24:A1068WangDN,WangX,KongQP.MaterSciEng,1991;A142:1579WangX,NiQH,ZhouH,KongQP.MaterSciEng,1990;A123:20710WangX,ZhouH,NiQH,KongQP,ZhouNB.MaterSciEng,1989;A122:L911WangX,WangDN,KongQP.ScrMetallMater,1993;28:401
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[6] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[7] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[8] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[9] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[10] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[11] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[12] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[13] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[14] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[15] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
No Suggested Reading articles found!