Please wait a minute...
Acta Metall Sin  1994, Vol. 30 Issue (4): 176-180    DOI:
Current Issue | Archive | Adv Search |
FATIGUE STRENGTH OF EXTRUDED SiC_W/ LD_2 COMPOSITE AND ITS INFLUENCING FACTORS
WANG Dezun; LIU Jun (Harbin Institute of Technology); YU Weicheng; WANG Zhongguang(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy of Sciences); YAO Zhongkai(Harbin Institute of Technology)(Manuscript received 23 April; 1993)
Cite this article: 

WANG Dezun; LIU Jun (Harbin Institute of Technology); YU Weicheng; WANG Zhongguang(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy of Sciences); YAO Zhongkai(Harbin Institute of Technology)(Manuscript received 23 April; 1993). FATIGUE STRENGTH OF EXTRUDED SiC_W/ LD_2 COMPOSITE AND ITS INFLUENCING FACTORS. Acta Metall Sin, 1994, 30(4): 176-180.

Download:  PDF(382KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Studies were made on the fatigue strength of the extruded 16 v.-% SiC whiskers reinforced LD2 composite with two varieties of whisker orientation and two regimes of aging. Observations on their microstructure before or after fatiguing and on fatigue fracture surfaces were carried out under TEM and SEM.Experimental results show that the composite has a superior high-cycle fatigue strength to the unreinforoed alloy, especially, of the longitudinal orientation in comparison with transverse one.Correspondent:WANG Dezun, associate professor, Harbin Institute of Technology, Harbin 150006
Key words:  fatigue strength      SiC whisker      LD2      composite     
Received:  18 April 1994     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1994/V30/I4/176

1CroweCR,HassonDF.ProcStrengthofMetalsandAlloys.Australia,1982:8592WilliamsDR,FineME.ProcICCM-V,USA,1985:6393ShangJK,RitchieRO.MetalMatrixComposites.AcademicPress,1988:2554于维成,袁金才,王中光.金属学报,1990;26:B4285MasudaC,TanakaV.Tetsu-To-Hagane,1989;9:3396BonnenJJ,YouCP,AllisonJE,JonesJW.Proc4thInternationalConferenceofFatigueandFatigueThresholds,USA,1990:8877YuW,YuanJ,WangJ,WangZ.Proc4thInternationalConferenceofFatigueandFatigueThresholds.USA,1990:8998HassenDF,CroweCR,AhearnJS,CookeDC.ProcFailureMechanismsinHighPerformanceMaterials,1984:1479ShangJK,RitchieRO.ProcICCM-VII,Chian,1989:95010HarrisSJ,YiG.ProcICCM-VII,Chian,1989:65911刘钧,王德尊,姚忠凯.兵器材料科学与工程,1992;15(4):112刘钧.哈尔滨工业大学硕士学位论文,1991
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[3] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[4] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[5] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[6] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[7] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[8] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[9] PAN Chengcheng, ZHANG Xiang, YANG Fan, XIA Dahai, HE Chunnian, HU Wenbin. Corrosion and Cavitation Erosion Behavior of GLNN/Cu Composite in Simulated Seawater[J]. 金属学报, 2022, 58(5): 599-609.
[10] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
[11] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[12] FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. 金属学报, 2022, 58(11): 1416-1426.
[13] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[14] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[15] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
No Suggested Reading articles found!