Please wait a minute...
Acta Metall Sin  1993, Vol. 29 Issue (7): 44-50    DOI:
Current Issue | Archive | Adv Search |
LOW-CYCLIC HYSTERESIS ENERGY FOR WELDED JOINT WITH MECHANICAL HETEROGENEITY
CHENG Guangxu;KUANG Zhenbang;LOU Zhiwen Xi'an Jiaotong UniversityDepartment of Chemical Engineering; Xi'an Jiaotong University; Xi'an 710049
Cite this article: 

CHENG Guangxu;KUANG Zhenbang;LOU Zhiwen Xi'an Jiaotong UniversityDepartment of Chemical Engineering; Xi'an Jiaotong University; Xi'an 710049. LOW-CYCLIC HYSTERESIS ENERGY FOR WELDED JOINT WITH MECHANICAL HETEROGENEITY. Acta Metall Sin, 1993, 29(7): 44-50.

Download:  PDF(484KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The cyclic hysteresis loops and their variation rules of base metal, weld metaland heat-affected zone for 16MnR pressure vessel steel were investigated by low-cycle fa-tigue tests. The definition of fatigue failure for welded joint was proposed, and the experimen-tal relations of cyclic hysteresis energy or total absorbed energy to failure vs the fatigue lifewere established. Finally, the effect of welding mechanical heterogeneity to fatigue damagewas discussed.
Key words:  welded joint      fatigue      cyclic hysteresis energy     
Received:  18 July 1993     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1993/V29/I7/44

1 Nichols R W,主编.压力容器技术进展--Ⅰ,机械工业出版社,1991:7
2 程光旭,楼志文,匡震邦.应用力学学报,1992;9(2) :1
3 程光旭,楼志文.压力容器,1991;8(6) :17
4 GB6399-86. 金属材料轴向等幅低循环疲劳试验方法
5 Ellyin F, Kujawski D, Trans. of ASME, J of Press Vess Tech, 1984; 106(4) : 342
6 Halford G R, J of Material. 1966; 1(1) : 3@
[1] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[6] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[7] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[8] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[11] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[12] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[13] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[14] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[15] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
No Suggested Reading articles found!