Please wait a minute...
Acta Metall Sin  1991, Vol. 27 Issue (4): 151-154    DOI:
Current Issue | Archive | Adv Search |
REDISTRIBUTION OF IMPURITY ATOMS Al, Si, Mn AND Cu IN PURE Ni DURING LASER MELTING
ZHENG Ling Chongqing Institute of Communications; ZOU Zhirong;LIU Jianglong Chongqing University
Cite this article: 

ZHENG Ling Chongqing Institute of Communications; ZOU Zhirong;LIU Jianglong Chongqing University. REDISTRIBUTION OF IMPURITY ATOMS Al, Si, Mn AND Cu IN PURE Ni DURING LASER MELTING. Acta Metall Sin, 1991, 27(4): 151-154.

Download:  PDF(355KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  An explanation of redistribution of impurity atoms, such as Al, Si Mn and Cu,in pure Ni during lower speed laser melting was made on the basis of proposed analysis mo-del for one-dimension heat transfer, The redistribution of solute along solid-liquid interfaceseems to be the principal reason why the impurity atoms redistributed in depth. The diffusionof the impurity atoms from low to high temperature zone and their selective surface evapora-tion are believed to be noticeably contributed to the distribution.
Key words:  Ni      laser melting      impurity atom      redistribution     
Received:  18 April 1991     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1991/V27/I4/151

1 Canova P, Ramous E. J Mater Sci, 1986; 21: 2143
2 Chande T, Mazumder J. J Appl Phys, 1985; 57: 2226
3 Chande T, Mazumder J. Appl Phys Lett, 1982; 41(1) : 42
4 Borovskii I B, Gorodskii D D, Sharafeev M I, Moryashchev F S, Sov Phys Dokl, 1982; 27: 259
5 Hsu S C, Chakravorty S, Mehrabian R. Metall Trans, 1978; B9: 221
6 Steen W M. Lett Heat Mass Trans 1977; 4: 167
7 Mazumder J, Steen W M. J Appl Phys, 1980; 51: 941
8 Clinc H E, Anthony T R. J Appl Phys, 1977; 48: 3895
9 Gregson V G. In: Bass M eds, Laser Material Prceessing, Bosten: North-Holland, 1983: 206
10 Aziz M J. J Appl Phys, 1982; 53: 1158
11 Cahn J W, Coriell S R.,Bcettinger W J. In: White C W, Peeicy P S eds., Laser and Electron Beam Processing of Materials, Preecedings of a Sympesium, Cambiidge, Mass., Novemter, 27--30. 1979, New York: Acacemic Press, 1980: 89
12 Spaepen F, Turnbull D. In: Pcate J M, Mayer J W eds., Laser Annealing in Semiconcuctors, New York: Academic Press, 1982: 15
13 王绍水译.材料的激光加工.北京:科学出版社,1982:315-321
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[5] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[7] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[8] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[9] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[12] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[13] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[14] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[15] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
No Suggested Reading articles found!