Please wait a minute...
Acta Metall Sin  1991, Vol. 27 Issue (2): 119-123    DOI:
Current Issue | Archive | Adv Search |
FATIGUE CRACK GROWTH FEATURE OF STEELS UNDER CATHODIC PROTECTION IN SEA WATER
WU Xinhua;ZHU Ziyong;KE Wei Institute of Corrosion and Protection of Metals; Academia Sinica; Shenyang
Cite this article: 

WU Xinhua;ZHU Ziyong;KE Wei Institute of Corrosion and Protection of Metals; Academia Sinica; Shenyang. FATIGUE CRACK GROWTH FEATURE OF STEELS UNDER CATHODIC PROTECTION IN SEA WATER. Acta Metall Sin, 1991, 27(2): 119-123.

Download:  PDF(466KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The fatigue crack growth feature of the offshore steels WFG36Z andA537CL1 under cathodic protection in sea water environment has been investigated.The deposits of Ca and Mg compounds were found to retard the rate of crack growthwhich will be no longer increasing monotonously against △K, but form V-shaped curve with a minumum crack growth rate at certain value of △K. Moreover,the optimum protection potential range may be changed by the action of deposits.The best range for the steels WFG36Z and A537CL1 in sea water environment is-800—-900 and -1100—-1500 mV respectively, and the harmful range seems to bewithin -950—-1000mV.
Key words:  fatigue crack growth      cathodic protection      deposit      retardation     
Received:  18 February 1991     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1991/V27/I2/119

1 Andresen R E. Metallic Corrosion, Vol.II, Frankfurt am Main: DECHEMA Deutssche Geutsche Gesellschaft fuer Apparatewesen e. V., 1981: 1333
2 Philipponneau G, Dagbert C, Galland J, Lemoine L. Metallic Corrosion, Vol. II, Frankfurt am Main: DECHEMA Deutsche Gesellschaft fuet Apparatewesen e.V., 1981: 1327
3 Mao W, Hartt W H. Corrosion'85, The IntCrnational Corrosion Forum Deveoted Exclusively to the Protection and Performance of Materials, Vol. VI, March 25--29, 1985, Boston, Massachusetts. Printed in the USA, Paper Number 317.
4 Cottis R A, Gowers K R, Haji-Ghassemi M H, Taqi E A. In: Duprat M, Chimie E N S eds, Electrochemical Methods in Corrosion Research, Switzerland: Trans Tech Publications Ltd.. 1986: 243
5 Marichev V A. Weckst Korros, 1982; 34: 1
6 Troiano A R Trans, 1960; 52: 54.
7 Masuda H, Matsuoka S, Nishijma S, Shimodaria M. Corros Sci, 1988; 28: 433
8 吴鑫华,朱自勇,柯伟.中国腐蚀与防护学报,待发表。
[1] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
[2] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[3] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[4] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[5] LIU Guang, CHEN Peng, YAO Xiyu, CHEN Pu, LIU Xingchen, LIU Chaoyang, YAN Ming. Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing[J]. 金属学报, 2022, 58(8): 1055-1064.
[6] HANG Tao, XUE Qi, LI Ming. A Review on Metal Micro-Nanostructured Array Materials Routed by Template-Free Electrodeposition[J]. 金属学报, 2022, 58(4): 486-502.
[7] GAO Yunming, HE Lin, QIN Qingwei, LI Guangqiang. ZrO2 Solid Electrolyte Aided Investigation on Electrodeposition in Na3AlF6-SiO2 Melt[J]. 金属学报, 2022, 58(10): 1292-1304.
[8] WANG Wenquan, DU Ming, ZHANG Xinge, GENG Mingzhang. Microstructure and Tribological Properties of WC-Ni Matrix Cermet Coatings Prepared by Electrospark Deposition on H13 Steel Substrate[J]. 金属学报, 2021, 57(8): 1048-1056.
[9] QIU Longshi, ZHAO Jing, PAN Xiaolong, TIAN Feng. Interfacial Fatigue Spalling Behavior of TiN Films on High Speed Steel[J]. 金属学报, 2021, 57(8): 1039-1047.
[10] ZHANG Ting, LI Zhongjie, XU Hao, DONG Anping, DU Dafan, XING Hui, WANG Donghong, SUN Baode. Microstruture and Properties of Ti/TNTZO Multi-Layered Material by Direct Laser Deposition[J]. 金属学报, 2021, 57(6): 757-766.
[11] WU Yucheng, GAO Zhiqiang, XU Guangqing, LIU Jiaqin, XUAN Haicheng, LIU Youhao, YI Xiaofei, CHEN Jingwu, HAN Peide. Current Status and Challenges in Corrosion and Protection Strategies for Sintered NdFeB Magnets[J]. 金属学报, 2021, 57(2): 171-181.
[12] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[13] GAO Bowen, WANG Meihan, YAN Maocheng, ZHAO Hongtao, WEI Yinghua, LEI Hao. Electrochemical Preparation and Corrosion Resistance of PEDOT Coatings on Surface of 2024 Aluminum Alloy[J]. 金属学报, 2020, 56(11): 1541-1550.
[14] Mingyu ZHAO,Huijuan ZHEN,Zhihong DONG,Xiuying YANG,Xiao PENG. Preparation and Performance of a Novel Wear-Resistant and High Temperature Oxidation-Resistant NiCrAlSiC Composite Coating[J]. 金属学报, 2019, 55(7): 902-910.
[15] Tongbang AN,Jinshan WEI,Jiguo SHAN,Zhiling TIAN. Influence of Shielding Gas Composition on Microstructure Characteristics of 1000 MPa Grade Deposited Metals[J]. 金属学报, 2019, 55(5): 575-584.
No Suggested Reading articles found!