Please wait a minute...
Acta Metall Sin  1990, Vol. 26 Issue (5): 28-33    DOI:
Current Issue | Archive | Adv Search |
COLD-ROLLING AND RECRYSTALLIZATION OF(110)[110] IRON-SILICON SINGLE CRYSTALS
ZHOU Bangxin Southwest Centre for Reactor Engineering Research and Design; Chengdu
Cite this article: 

ZHOU Bangxin Southwest Centre for Reactor Engineering Research and Design; Chengdu. COLD-ROLLING AND RECRYSTALLIZATION OF(110)[110] IRON-SILICON SINGLE CRYSTALS. Acta Metall Sin, 1990, 26(5): 28-33.

Download:  PDF(1413KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  After cold-rolled 70--90%, strong {111} 〈110〉and weak {111} 〈112〉cold-rolled textures, and perfect {111} 〈112〉 recrystallizatinn texture were obtained.The cold-rolled textures with different orientation possessed different ability for re-covery because of the difference of dislocation structure and store energy after cold-rolled. The recovery taking place at {111} 〈112〉 orientation region was prior tothat at {111} 〈110〉 orientation region. These subgrains with {111} 〈112〉 orienta-tion became recrystallization nuclei during their growth at expending the surround-ing matrix which was sluggish in recovery process. The development of recrysta-llization textures may be suggested as process of "nucleation in-situ-selective gro-wth". The formation of (111) textures in low carbon steel sheets has been discussedin the light of this suggestion.
Key words:  Pe-Si single crystal      deformation      recrystallization      texture     
Received:  18 May 1990     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1990/V26/I5/28

1 Grewen J, Huber J. In: Haessner F ed, Recrystallization of Metallic Materials, Stuttgart: Dr. Riederev-Verlag GmbH, 1978: 125
2 Hu Hsun. In: Gottstein G, Luecke K eds., Proc 5th Int Conf on Textures of Materials, Vol. Ⅱ, Springer-Verlag, 1978: 3
3 周邦新.金属学报,1964;7:423 周邦新.金属学报,1965;8:380
4 陈能宽,刘长禄.金属学报,1958;3:30
5 周邦新,颜鸣皋.物理学报,1963;19:633
6 Richards P N. J Aust Inst Met, 1967; 12: 2
7 Inagaki H. Trans Iron Steel Inst Met, 1984; 24: 266
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[8] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[9] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[10] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[11] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[12] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[13] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[14] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[15] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
No Suggested Reading articles found!