Please wait a minute...
Acta Metall Sin  1989, Vol. 25 Issue (5): 59-64    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF SUBSTRUCTURE AND RESIDUAL STRESS IN STRENGTHENED LAYER ON FATIGUE STRENGTH OF STAINLESS STEEL OR LOW CARBON STEEL
TAN Yuxu;REN Liping;LI Gang Xi'an Jiaotong University TAN Yuxu; Associate professor; Institute of Metallic Materials and Strength; Xi'an Jiaotong University; 710048 Xi'an
Cite this article: 

TAN Yuxu;REN Liping;LI Gang Xi'an Jiaotong University TAN Yuxu; Associate professor; Institute of Metallic Materials and Strength; Xi'an Jiaotong University; 710048 Xi'an. EFFECT OF SUBSTRUCTURE AND RESIDUAL STRESS IN STRENGTHENED LAYER ON FATIGUE STRENGTH OF STAINLESS STEEL OR LOW CARBON STEEL. Acta Metall Sin, 1989, 25(5): 59-64.

Download:  PDF(1815KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In the strengthened surface layer of stainless steel after shot peening,there are a great amount of deformation microtwins, which may act as structuralstrengthening and prevent the gradual relexation of surface residual stress duringfatigue, so as to keep its rather high level of bending fatigue strength. However,in the strengthened surface layer of low carbon steel, dislocation cell structure isso unstable during fatigue that its surface residual stress relexation cannot be retard-ed. Therefore, the bending fatigue strength of the low carbon steel does not beimproved by shot peening.
Key words:  substructure      residual stress      fatigue strength     
Received:  18 May 1989     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1989/V25/I5/59

1 Almen J O, Black P H. Residual Stress and Fatigue in Metals, New York: McGraw-Hill, 1963
2 Starker P, Wohlfahrt H, Macherauch E. Fatigue Eng Mater Struct, 1979; 1: 319
3 米谷茂,残留応力发生对策,东京:养贤堂,1975:15
4 Hasegawa T, Yakou T, Karashima S. Mater Sci Eng, 1975; 20: 26
[1] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[5] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[8] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[9] ZHANG Xinfang, XIANG Siqi, YI Kun, GUO Jingdong. Controlling the Residual Stress in Metallic Solids by Pulsed Electric Current[J]. 金属学报, 2022, 58(5): 581-598.
[10] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[11] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[12] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[13] JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. 金属学报, 2020, 56(10): 1433-1440.
[14] BI Zhongnan,QIN Hailong,DONG Zhiguo,WANG Xiangping,WANG Ming,LIU Yongquan,DU Jinhui,ZHANG Ji. Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings[J]. 金属学报, 2019, 55(9): 1160-1174.
[15] Hailong QIN,Ruiyao ZHANG,Zhongnan BI,Lee Tung Lik,Hongbiao DONG,Jinhui DU,Ji ZHANG. Study on the Evolution of Residual Stress During Ageing Treatment in a GH4169 Alloy Disk[J]. 金属学报, 2019, 55(8): 997-1007.
No Suggested Reading articles found!