Please wait a minute...
Acta Metall Sin  1988, Vol. 24 Issue (4): 342-347    DOI:
Current Issue | Archive | Adv Search |
A J-INTEGRAL ANALYSIS OF CRACKS IN OVERMATCHED WELDED JOINTS
MA Weidian;ZHANG Shicheng;TIAN Xitang Qinghua University; Harbin Institute of TechnologyDept. of Mechanical Engineering; Qinghua University; Beijing
Cite this article: 

MA Weidian;ZHANG Shicheng;TIAN Xitang Qinghua University; Harbin Institute of TechnologyDept. of Mechanical Engineering; Qinghua University; Beijing. A J-INTEGRAL ANALYSIS OF CRACKS IN OVERMATCHED WELDED JOINTS. Acta Metall Sin, 1988, 24(4): 342-347.

Download:  PDF(494KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effects of material inhomogenity and weld width of the over-matched welded joints with a longitudinal crack or flaw upon the J-integral, a charac-terizing parameter for elastoplastic fracture, have been studied. The overmatchedweld is idealized to be a parallelly cracked and sandwiched hard layer, the yieldstress of which is higher than that of the base metal. Numerical solutions were ob-tained by using elastoplastic finite element method under the assumption of plane stress.The results show that the values of J-integral are remarkably affected by the mate-rial inhomogenity and the weld width especially when the nominal stress or nominalstrain is comparatively high, which, therefore, should be taken into account whenevaluating the crack driving force for a overmatched joint.
Key words:  welded joint      crack      J-integral     
Received:  18 April 1988     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1988/V24/I4/342

1 Kumar V, German M D, Shih C F, 高庆译. 铁道科技译文. 西南交通大学科技情报研究室, 1982; (2) :1
2 Satoh K, Toyada M. International Institute of Welding Document X-1031-83
3 Satoh K, Toyada M, International Institute of Welding Document X-1113-86
4 马维甸,焊接学报,1987;8(2) :89
5 Radaj D. Weld Res Abroad, 1976; 4: 51
6 Rice J R.Fracture, Vol. Ⅱ, London: Academic Press, 1968: 191
7 马维甸.机械工程学报,1987;23(4) :43
8 大路清嗣,小仓敬二,久保司郎著.向帝北,吴树森,韩有悌译.断裂力学(四),科学技术文献出版社重庆分社,1981:1
9 马维甸.机械强度,1987;9(4) :62
10 马维甸.焊接接头不均匀体的弹塑性断裂力学研究,博士学位论文,哈尔滨工业大学,1985
11 Tian Xitang(田锡唐), Ma Weidian(马维甸). Neue Engtwicklungen und Anwendungen in der Schweibtechnik Vortrage der 1 Deutsch-Chinesischen Konferenz in Beijing,1987:137S
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[7] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[8] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[10] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[12] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[13] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[14] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[15] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
No Suggested Reading articles found!