Please wait a minute...
Acta Metall Sin  1988, Vol. 24 Issue (3): 187-192    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF COMPOSITION AND HEAT TREATMENT ON HYDROGEN PERMEATION IN AUSTENITIC STAINLESS STEELS
SUN Xiukui;XU Jian;LI Yiyi Institute of Metal Research; Academia Sinica; Shenyang
Cite this article: 

SUN Xiukui;XU Jian;LI Yiyi Institute of Metal Research; Academia Sinica; Shenyang. EFFECT OF COMPOSITION AND HEAT TREATMENT ON HYDROGEN PERMEATION IN AUSTENITIC STAINLESS STEELS. Acta Metall Sin, 1988, 24(3): 187-192.

Download:  PDF(475KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Permeability, diffusivity and solubility of hydrogen in austenitic stain-less steels 316L, 316LN, 21-6-9, 21-9-9, 304 and 1Cr18Ni9Ti have been measuredby gaseous permeation technique over the temperature range of 200 to 430℃. Theeffects of composition, cold-work and heat treatment on hydrogen petmeation havebeen investigated. The results indicate that permeability and diffusivity of hydro-gen in various alloys over the experimental temperature range follow arrheniusequations and hydrogen permeation behaviour is not obviously influenced by cold-work and heat treatment of materials, but slightly influenced by the composition.The difference of hydrogen permeation behaviour between pure iron, low alloysteels and austenitic stainless steels has also been discussed.
Key words:  gaseous hydrogen permeation      austenitic stainless steel      cold-working      heat treatment     
Received:  18 March 1988     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1988/V24/I3/187

1 Quick N R, Johnson H H. Metall Trans, 1979; 10A: 67
2 Gromov A I, Kovneristyi Y K. Met Sci Heat Trest, 1980; 22: 321
3 Studebaker P, Altstetter C, Conley W. In: Bernstein L M, Thompson A W eds., Hydrogen Effects in Metals, Warrendale: TMS-AIME, 1981: 169
4 Katsuta H, Furukawa K. J Nucl Sci Technol, 1981; 18: 143
5 Outlaw R A, Peterson D T. Metall Trans, 1983; 14A: 1869
6 Tanabe T, Yamanishi Y, Sawada K, Imoto S. J Nucl Mater, 1984; 123: 1568
7 Louthan M R, Derrick R G. Corros Sci, 1975; 15: 565
8 Perng T P, Altstetter C J. Acta Metall, 1986; 34: 1771
9 孙秀魁,徐坚,刘宝昌.真空科学与技术,1986; 6(6) :32
10 冼爱平.金属研究所硕士论文,1985
11 胡学军.金属研究所硕土论文,1986
12 Oriani R A. Acta Metall, 1970; 18: 147
14 肖纪美.不锈钢的金属学问题,北京:冶金工业出版社,1983:420
[1] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[2] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[3] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[4] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[5] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[6] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[7] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[8] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[9] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[10] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[11] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[12] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[13] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[14] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[15] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
No Suggested Reading articles found!