Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (7): 845-853    DOI: 10.3724/SP.J.1037.2013.00786
Current Issue | Archive | Adv Search |
EFFECTS OF Ni ON MICROSTRUCTURAL EVOLUTION AND γ′ DISSOLUTION OF NOVEL Co-Al-W BASE ALLOYS
XUE Fei1, MI Tao1, WANG Meiling2, DING Xianfei2, LI Xianghui3, FENG Qiang1,2()
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
3 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
Cite this article: 

XUE Fei, MI Tao, WANG Meiling, DING Xianfei, LI Xianghui, FENG Qiang. EFFECTS OF Ni ON MICROSTRUCTURAL EVOLUTION AND γ′ DISSOLUTION OF NOVEL Co-Al-W BASE ALLOYS. Acta Metall Sin, 2014, 50(7): 845-853.

Download:  HTML  PDF(9834KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influences of Ni on the phase transformation temperatures, γ /γ′ two-phase microstructural evolution, γ′ dissolution behavior and microhardness have been investigated in four Co-Al-W base alloys containing various Ni contents (15%~45%, atomic fraction). The results show that the γ′ solvus temperatures continuously increase and the solidus temperatures are nearly unchanged with increasing the Ni content. The γ/γ′ two-phase microstructure is generated in four experimental alloys after the heat treatment at 900 ℃ for 50 h, whereas the γ′ morphology changes from cuboidal to nearly spherical and the γ′ volume fraction reduces as the Ni content increases. When prolonged heat treatment at 900 ℃ for 300 h is employed, no significant change in the γ′ morphology is observed in four experimental alloys but the γ′ volume fraction decreases to different degree as a function of Ni concentration. High temperature treatments at 970~1060 ℃ are conducted after experimental alloys are heat treated at 900 ℃ for 300 h. In the high temperature range, the dissolution of the γ′ phase is more pronounced as the temperature elevates, whilst the γ′ morphology becomes spherical and cuboidal in alloys containing the low and high levels of Ni, respectively. The microhardness results of the experimental alloys after heat treatment at 900 ℃ for 50 h and 300 h indicate that the microhardness is lowered in alloys with higher Ni content, but it increases as the heat treatment time is prolonged.

Key words:  Co-Al-W base alloy      Ni      microstructure      microhardness     
Received:  03 December 2014     
ZTFLH:  TG146.1  
  TG132.3  
Fund: Supported by National Natural Science Foundation of China (Nos.50771012 and 51301014), Aeronautical Science Foundation of China (No.2009ZF74011) and New Century Excellent Talents in University (No.NCET-06-0079)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00786     OR     https://www.ams.org.cn/EN/Y2014/V50/I7/845

Alloy Al W Ni Co
15Ni 9 10 15 Bal.
25Ni 9 10 25 Bal.
35Ni 9 10 35 Bal.
45Ni 9 10 45 Bal.
Table 1  Nominal compositions of Co-Al-W base alloys
Fig.1  Typical microstructures of alloys 15Ni (a1, a2), 25Ni (b1, b2), 35Ni (c1, c2) and 45Ni (d1, d2) after heat treatment at 900 ℃ for 50 h (a1~d1) and 300 h (a2~d2)
Fig.2  Volume fraction and size of γ′ precipitates in the Co-Al-Wbase alloys after heat treatment at 900 ℃ for 50 h and 300 h and 970~1030 ℃ for 4 h
Condition Heat treatment
A1 1300 ℃, 24 h (A.C.) + 900 ℃, 50 h (W.Q.)
A2 1300 ℃, 24 h (A.C.) + 900 ℃, 300 h (W.Q.)
B1 1300 ℃, 24 h (A.C.) + 900 ℃, 300 h (W.Q.) + 970 ℃, 4 h (W.Q.)
B2 1300 ℃, 24 h (A.C.) + 900 ℃, 300 h (W.Q.) + 1000 ℃, 4 h (W.Q.)
B3 1300 ℃, 24 h (A.C.) + 900 ℃, 300 h (W.Q.) + 1030 ℃, 4 h (W.Q.)
B4 1300 ℃, 24 h (A.C.) + 900 ℃, 300 h (W.Q.) + 1060 ℃, 4 h (W.Q.)
Table 2  Heat treatment processes used in the current study
Alloy γ′ solvus temperature Solidus temperature
15Ni 1030 1460
25Ni 1037 1464
35Ni 1049 1464
45Ni 1079 1465
Table 3  γ′ solvus and solidus temperatures of the Co-Al-W base alloys
Fig.3  Typical microstructures of alloys 15Ni (a1~a3), 25Ni (b1~b3), 35Ni (c1~c3) and 45Ni (d1~d3) after heat treatment at 900 ℃ for 300 h and subsequently at 970 ℃ (a1~d1), 1000 ℃ (a2~d2) and 1030 ℃ (a3~d3) for 4 h
Fig.4  Vickers microhardness of the Co-Al-W base alloys after heat treatment at 900 ℃ for 50 h and 300 h
Alloy A1 A2 B1 B2 B3 B4
15Ni Cuboidal Cuboidal Spherical Spherical No γ No γ
25Ni Nearly cuboidal Nearly cuboidal Spherical Spherical No γ No γ
35Ni Nearly spherical Nearly spherical Spherical Nearly cuboidal Nearly cuboidal No γ
45Ni Spherical Spherical Spherical Nearly cuboidal Cuboidal No γ
Table 4  Morphology of γ′ precipitates in the Co-Al-W base alloys after heat treatment at 900 ℃ for 50 h and 300 h and 970~1030 ℃ for 4 h
[1] Sims C T, Stoloff N S, Hagel W C. Superalloys II. New York: John Wiley & Sons, 1987: 135
[2] Blaise J M, Viatour P, Drapier J M. Cobalt, 1970; 49: 192
[3] Drapier J M, Coutsouradis D. Cobalt, 1968; 39: 63
[4] Sato J, Omori T, Oikawa K, Ohnuma I, Karinuma R, Ishida K. Science, 2006; 312(5770): 90
[5] Titus M S, Suzuki A, Pollock T M. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Portella P D, Telesman J eds., Superalloys 2012, Champion, PA: TMS, 2012: 823
[6] Titus M S, Suzuki A, Pollock T M. Scr Mater, 2012; 66: 574
[7] Bauer A, Neumeier S, Pyczak F, Singer R F, Göken M. Mater Sci Eng, 2012; A550: 333
[8] Xue F, Wang M L, Feng Q. Mater Sci Forum, 2011; 686: 388
[9] Xue F, Wang M, Feng Q. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Portella P D, Telesman J eds., Superalloys 2012, Champion, PA: TMS, 2012: 813
[10] Bauer A, Neumeier S, Pyczak F, Göken M. Scr Mater, 2010; 63: 1197
[11] Suzuki A, Pollock T M. Acta Mater, 2008; 56: 1288
[12] Shinagawa K, Omori T, Sato J, Oikawa K, Ohnuma I, Kainuma R, Ishida K. Mater Trans, 2008; 49: 1474
[13] Xue F, Zhou H J, Ding X F, Wang M L, Feng Q. Mater Lett, 2013; 112: 215
[14] Grosdidier T, Hazotte A, Simon A. Mater Sci Eng, 1998; A256: 183
[15] Grosdidier T, Hazotte A, Simon A. Scr Metall Mater, 1994; 30: 1257
[16] Cormier J, Jouiad M, Hamon F, Villechaise P, Milhet X. Philos Mag Lett, 2010; 90: 611
[17] Omori T, Oikawa K, Sato J, Ohnuma I, Kattner U R, Kainuma R, Ishida K. Intermetallics, 2013; 32: 274
[18] Xue F, Li Z Q, Feng Q. Mater Sci Forum, 2010; 654-656: 420
[19] Li X H, Gan B, Feng Q, Sun Z Q, Chen G L, Zhang G Q, Cao L M. J Univ Sci Technol Beijing, 2008; 30: 1369
(李相辉, 甘 斌, 冯 强, 孙祖庆, 陈国良, 张国庆, 曹腊梅. 北京科技大学学报, 2008; 30: 1369)
[20] Carroll L J, Feng Q, Pollock T M. Metall Mater Trans, 2008; 39A: 1290
[21] Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans, 2006; 37A: 2927
[22] Murakumo T, Kobayashi T, Koizumi Y, Harada H. Acta Mater, 2004; 52: 3737
[23] Shinagawa K, Omori T, Oikawa K, Kainuma R, Ishida K. Scr Mater, 2009; 61: 612
[24] Jarrett R N, Tien J K. Metall Trans, 1982; 13A: 1021
[25] Nathal M V, Ebert L J. Metall Trans, 1985; 16A: 1849
[26] Viatour P, Drapier J M, Coutsouradis D. Cobalt, 1973; 3: 67
[27] Chen M, Wang C Y. J Appl Phys, 2010; 107: 093705
[28] Sponseller D L. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Champion, PA: TMS, 1996: 259
[29] Jiang W H, Guan H F, Hu Z Q. J Aeron Mater, 2001; 21(1): 1
(姜文辉, 管恒荣, 胡壮麒. 航空材料学报, 2001; 21(1): 1)
[30] The Editorial Board of China Aeroautical Materials Handbook. China Aeronautical Matrials Handbook. 2nd Ed., Vol.2, Beijing: Standards Press of China, 2002: 531
(《中国航空材料手册》编辑委员会. 中国航空材料手册. 第2版, 第2卷, 北京: 中国标准出版社, 2002: 531)
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[8] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[9] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[10] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[11] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[12] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[13] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[14] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[15] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
No Suggested Reading articles found!