|
|
EFFECTS OF Ni ON MICROSTRUCTURAL EVOLUTION AND γ′ DISSOLUTION OF NOVEL Co-Al-W BASE ALLOYS |
XUE Fei1, MI Tao1, WANG Meiling2, DING Xianfei2, LI Xianghui3, FENG Qiang1,2( ) |
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 2 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 3 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 |
|
Cite this article:
XUE Fei, MI Tao, WANG Meiling, DING Xianfei, LI Xianghui, FENG Qiang. EFFECTS OF Ni ON MICROSTRUCTURAL EVOLUTION AND γ′ DISSOLUTION OF NOVEL Co-Al-W BASE ALLOYS. Acta Metall Sin, 2014, 50(7): 845-853.
|
Abstract The influences of Ni on the phase transformation temperatures, γ /γ′ two-phase microstructural evolution, γ′ dissolution behavior and microhardness have been investigated in four Co-Al-W base alloys containing various Ni contents (15%~45%, atomic fraction). The results show that the γ′ solvus temperatures continuously increase and the solidus temperatures are nearly unchanged with increasing the Ni content. The γ/γ′ two-phase microstructure is generated in four experimental alloys after the heat treatment at 900 ℃ for 50 h, whereas the γ′ morphology changes from cuboidal to nearly spherical and the γ′ volume fraction reduces as the Ni content increases. When prolonged heat treatment at 900 ℃ for 300 h is employed, no significant change in the γ′ morphology is observed in four experimental alloys but the γ′ volume fraction decreases to different degree as a function of Ni concentration. High temperature treatments at 970~1060 ℃ are conducted after experimental alloys are heat treated at 900 ℃ for 300 h. In the high temperature range, the dissolution of the γ′ phase is more pronounced as the temperature elevates, whilst the γ′ morphology becomes spherical and cuboidal in alloys containing the low and high levels of Ni, respectively. The microhardness results of the experimental alloys after heat treatment at 900 ℃ for 50 h and 300 h indicate that the microhardness is lowered in alloys with higher Ni content, but it increases as the heat treatment time is prolonged.
|
Received: 03 December 2014
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.50771012 and 51301014), Aeronautical Science Foundation of China (No.2009ZF74011) and New Century Excellent Talents in University (No.NCET-06-0079) |
[1] |
Sims C T, Stoloff N S, Hagel W C. Superalloys II. New York: John Wiley & Sons, 1987: 135
|
[2] |
Blaise J M, Viatour P, Drapier J M. Cobalt, 1970; 49: 192
|
[3] |
Drapier J M, Coutsouradis D. Cobalt, 1968; 39: 63
|
[4] |
Sato J, Omori T, Oikawa K, Ohnuma I, Karinuma R, Ishida K. Science, 2006; 312(5770): 90
|
[5] |
Titus M S, Suzuki A, Pollock T M. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Portella P D, Telesman J eds., Superalloys 2012, Champion, PA: TMS, 2012: 823
|
[6] |
Titus M S, Suzuki A, Pollock T M. Scr Mater, 2012; 66: 574
|
[7] |
Bauer A, Neumeier S, Pyczak F, Singer R F, Göken M. Mater Sci Eng, 2012; A550: 333
|
[8] |
Xue F, Wang M L, Feng Q. Mater Sci Forum, 2011; 686: 388
|
[9] |
Xue F, Wang M, Feng Q. In: Huron E S, Reed R C, Hardy M C, Mills M J, Montero R E, Portella P D, Telesman J eds., Superalloys 2012, Champion, PA: TMS, 2012: 813
|
[10] |
Bauer A, Neumeier S, Pyczak F, Göken M. Scr Mater, 2010; 63: 1197
|
[11] |
Suzuki A, Pollock T M. Acta Mater, 2008; 56: 1288
|
[12] |
Shinagawa K, Omori T, Sato J, Oikawa K, Ohnuma I, Kainuma R, Ishida K. Mater Trans, 2008; 49: 1474
|
[13] |
Xue F, Zhou H J, Ding X F, Wang M L, Feng Q. Mater Lett, 2013; 112: 215
|
[14] |
Grosdidier T, Hazotte A, Simon A. Mater Sci Eng, 1998; A256: 183
|
[15] |
Grosdidier T, Hazotte A, Simon A. Scr Metall Mater, 1994; 30: 1257
|
[16] |
Cormier J, Jouiad M, Hamon F, Villechaise P, Milhet X. Philos Mag Lett, 2010; 90: 611
|
[17] |
Omori T, Oikawa K, Sato J, Ohnuma I, Kattner U R, Kainuma R, Ishida K. Intermetallics, 2013; 32: 274
|
[18] |
Xue F, Li Z Q, Feng Q. Mater Sci Forum, 2010; 654-656: 420
|
[19] |
Li X H, Gan B, Feng Q, Sun Z Q, Chen G L, Zhang G Q, Cao L M. J Univ Sci Technol Beijing, 2008; 30: 1369
|
|
(李相辉, 甘 斌, 冯 强, 孙祖庆, 陈国良, 张国庆, 曹腊梅. 北京科技大学学报, 2008; 30: 1369)
|
[20] |
Carroll L J, Feng Q, Pollock T M. Metall Mater Trans, 2008; 39A: 1290
|
[21] |
Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans, 2006; 37A: 2927
|
[22] |
Murakumo T, Kobayashi T, Koizumi Y, Harada H. Acta Mater, 2004; 52: 3737
|
[23] |
Shinagawa K, Omori T, Oikawa K, Kainuma R, Ishida K. Scr Mater, 2009; 61: 612
|
[24] |
Jarrett R N, Tien J K. Metall Trans, 1982; 13A: 1021
|
[25] |
Nathal M V, Ebert L J. Metall Trans, 1985; 16A: 1849
|
[26] |
Viatour P, Drapier J M, Coutsouradis D. Cobalt, 1973; 3: 67
|
[27] |
Chen M, Wang C Y. J Appl Phys, 2010; 107: 093705
|
[28] |
Sponseller D L. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Champion, PA: TMS, 1996: 259
|
[29] |
Jiang W H, Guan H F, Hu Z Q. J Aeron Mater, 2001; 21(1): 1
|
|
(姜文辉, 管恒荣, 胡壮麒. 航空材料学报, 2001; 21(1): 1)
|
[30] |
The Editorial Board of China Aeroautical Materials Handbook. China Aeronautical Matrials Handbook. 2nd Ed., Vol.2, Beijing: Standards Press of China, 2002: 531
|
|
(《中国航空材料手册》编辑委员会. 中国航空材料手册. 第2版, 第2卷, 北京: 中国标准出版社, 2002: 531)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|