Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (5): 567-574    DOI: 10.3724/SP.J.1037.2013.00654
Current Issue | Archive | Adv Search |
STUDY OF ROLLING-REMELTING SIMA PROCESS FOR PREPARING THE SEMI-SOLID BILLET OF ZCuSn10 ALLOY
WANG Jia1,2, XIAO Han1(), WU Longbiao1, LU Dehong1, ZHOU Rongfeng1,3, ZHOU Rong1
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2 College of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643000
3 Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093
Cite this article: 

WANG Jia, XIAO Han, WU Longbiao, LU Dehong, ZHOU Rongfeng, ZHOU Rong. STUDY OF ROLLING-REMELTING SIMA PROCESS FOR PREPARING THE SEMI-SOLID BILLET OF ZCuSn10 ALLOY. Acta Metall Sin, 2014, 50(5): 567-574.

Download:  HTML  PDF(14900KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Semi-solid billet of ZCuSn10 alloy is prepared by strain induced melt activation (SIMA) method which included the rolling and remelting process. Firstly, ZCuSn10 alloy is cast, and samples are cut from ingot casting. Secondly, the samples are rolled with 2~4 passes after holding at 450 ℃ for 15 min, then the new samples are cut from deformed alloy. Lastly, the new samples are reheated up to 850 ℃ or 875 ℃ for 15 min, then water quenching. Semi-solid microstructure is observed and compared with microstructure of ZCuSn10 alloy directly reheated after casting. The distribution of Sn element in microstructure under different conditions is measured by using EDS function of SEM, and the microstructure changes during the SIMA process are observed by means of OM and TEM. Based on the experiments, the microstructure evolution is synthetically analyzed and explained during the course of semi-solid billet of ZCuSn10 alloy prepared by SIMA method. The results indicate that semi-solid microstructure of ZCuSn10 alloy by rolling- remelting SIMA process is equal-fine grain, and spheroidization of solid particle is well. The optimum semi-solid microstructure is obtained when alloy deformed 19.7% is remelted at 875 ℃ for 15 min, the average grain diameter is 75.8 μm, shape factor is 1.62, and volume fraction of liquid phase is 17.28%. Deformation process plays a crucial role in grain refinement and spheroidization during SIMA process for preparing the semi-solid billet of ZCuSn10 alloy, as deformation and remelting temperature increases, the size and shape of solid phase in semi solid microstructure are smaller and more round, volume fraction of liquid phase increases. The main mechanism of SIMA process preparing semi-solid billet of ZCuSn10 alloy is that predeformation breaks dendrites and stores energy of deformation into dendrites, and promotes dendrites melting through remelting process. Meanwhile, liquid phase occupies sharp corners of solid particles by Sn element diffusing from liquid phase into α solid phase, so that fine, uniform and roundness α solid particles are gained.

Key words:  ZCuSn10 alloy      SIMA method      deformation      remelting temperature      semi-solid microstructure     
Received:  16 October 2013     
ZTFLH:  TG335  
Fund: Applied Basic Research Key Project of Yunnan Province (No.2011FA007),Specialized Research Fund for Doctoral Program of Higher Education (No.20125314120013), Scientific Research Fund of Yunnan Provincial Education Department (No.2012Y543) and Development Research Fund from Sichuan University of Science and Engineering (No.2013PY05)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00654     OR     https://www.ams.org.cn/EN/Y2014/V50/I5/567

Fig.1  

ZCuSn10合金铸锭的DSC曲线

Process Sample Processing step
Predeformation Remelting
Casting-remelting A 850 ℃, 15 min, W.Q.
B 875 ℃, 15 min, W.Q.
Rolling-remelting SIMA C 450 ℃, 15 min, 2 passes rolling (10.1%) 850 ℃, 15 min, W.Q.
D 875 ℃, 15 min, W.Q.
E 450 ℃, 15 min, 3 passes rolling (14.8%) 850 ℃, 15 min, W.Q.
F 875 ℃, 15 min, W.Q.
G 450 ℃, 15 min, 4 passes rolling (19.7%) 850 ℃, 15 min, W.Q.
H 875 ℃, 15 min, W.Q.
表1  实验工艺及参数
Fig.2  

ZCuSn10合金的原始铸态组织及变形量为19.7%的热轧态组织

Fig.3  

ZCuSn10合金铸态组织的SEM像及Sn元素的分布

Fig.4  

ZCuSn10合金热轧到19.7%变形量时组织的TEM像

Fig.5  

ZCuSn10合金铸态重熔试样A和B的组织

Fig.6  

试样H的TEM像

Fig.7  

不同轧制-重熔SIMA工艺的ZCuSn10合金试样的组织

Fig.8  

变形量对ZCuSn10合金半固态组织特征的影响

Fig.9  

SIMA法制备ZCuSn10合金半固态坯料演变机理示意图

[1] Spencer D B, Mehrabia R, Flemings M C. Metall Trans, 1972; 3: 1925
[2] Flemings M C. Metall Trans, 1991; 22A: 957
[3] Chen Q, Luo S J, Zhao Z D. J Alloys Compd, 2009; 447: 726
[4] Kiuchi M, Kopp R. CIRP Ann-Manuf Technol, 2002; 51: 653
[5] Kirkwood D H. Int Mater Rev, 1994; 39: 173
[6] Zhao J W, Wu S S, Wan L, Chen Q H, An P. Acta Metall Sin, 2009; 45: 314
(赵君文, 吴树森, 万 里, 陈启华, 安 萍. 金属学报, 2009; 45: 314)
[7] Luo S J, Chen Q, Zhao Z D. Mater Sci Eng, 2009; A501: 146
[8] Liu Z, Mao W M, Zhao Z D. Acta Metall Sin, 2009; 45: 507
(刘 政, 毛卫民, 赵振铎. 金属学报, 2009; 45: 507)
[9] Young K P, Kyonka C P, Courtois J A. US Pat, 4415374, 1983
[10] Lin H Q, Wang J G, Wang H Y, Jiang Q C. J Alloys Compd, 2007; 431: 141
[11] Dong J, Cui J Z, Le Q C, Lu G M. Mater Sci Eng, 2003; A345: 234
[12] Hassas-Irani S B, Zarei-Hanzaki A, Bazaz B, Roostaei A A. Mater Des, 2013; 46: 579
[13] Alipour M, Aghdam B G, Rahnoma H E, Emamy M. Mater Des, 2013; 46: 766
[14] Jiang J F, Wang Y, Qu J J. Mater Sci Eng, 2013; A560: 473
[15] Dodangeh A, Kazeminezhad M, Aashuri H. Mater Sci Eng, 2012; A558: 371
[16] Tao J Q, Cheng Y S, Huang S D, Peng F F, Yang W X, Lu M Q, Zhang Z M, Jin X. Trans Nonferrous Metall, 2012; 22(suppl 2): 428
[17] Chen Q, Zhao Z D, Zhao Z X, Hu C K, Shu D Y. J Alloys Compd, 2011; 509: 7303
[18] Tian R Z,Wang Z T. Handbook of Copper Alloy and its Processing. Changsha: Central South University Press, 2002: 259
(田荣璋,王祝堂. 铜合金及其加工手册. 长沙: 中南大学出版社, 2002: 259)
[19] Metallographic Experiment Group of Central Laboratory of Luoyang Copper Processing Factory. Metallographic Atlas of Copper and Copper Alloy. Beijing: Metallurgical Industry Press, 1983: 74
(洛阳铜加工厂中心试验室金相组. 铜及铜合金金相图谱. 北京: 冶金工业出版社, 1983: 74)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[4] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[6] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[7] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[10] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[11] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[12] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[13] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[14] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[15] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
No Suggested Reading articles found!