Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (5): 575-586    DOI: 10.3724/SP.J.1037.2013.00501
Current Issue | Archive | Adv Search |
IGNITION RESISTANCE PERFORMANCE AND ITS THEORETICAL ANALYSIS OF Ti-V-Cr TYPE FIREPROOF TITANIUM ALLOYS
MI Guangbao(), HUANG Xu, CAO Jingxia, CAO Chunxiao
Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys, Beijing Institute of Aeronautical Materials, Beijing 100095
Cite this article: 

MI Guangbao, HUANG Xu, CAO Jingxia, CAO Chunxiao. IGNITION RESISTANCE PERFORMANCE AND ITS THEORETICAL ANALYSIS OF Ti-V-Cr TYPE FIREPROOF TITANIUM ALLOYS. Acta Metall Sin, 2014, 50(5): 575-586.

Download:  HTML  PDF(14254KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a type of structure functional high temperature alloy, the ignition resistance performance of fireproof titanium alloy is an important basis for the safety in the application. In this work, the relationship between the friction contact pressure P and oxygen concentration c0 of mixed airflow was established to describe the ignition resistance of fireproof titanium alloys. The ignition resistance of the traditional titanium alloys and typical Ti-V-Cr type titanium alloys was investigated and compared. Based on the principle of friction-induced heat and the thermal explosion theory of ignition, the mechanism of the ignition resistance of fireproof titanium alloys was modeled, calculated and analyzed. The results showed that Ti40 was ignited immediately at room temperature as c0≥70%. The ignition resistance of Ti40 was 2.5% lower than that of Alloy C+ and 40% higher than that of TC4. The ignition originated from the micro-tip formed during friction and the chemical adsorption of oxygen on the micro-tip was the key step for the interaction. With increasing of equivalent pressure Peq, the critical temperature T * ignited by friction decreasd. When Peq varied from 0.1 to 0.5 MPa, T * of Ti40 ranged from 1073 to 1323 K. The surface under friction was 2~5 μm and composed of the fusion of the oxides including TiO2, V2O5 and Cr2O3. The lubrication condition between the contacting surfaces was improved by the fused layer and resulted in great temperature decrease in the friction area. Consequently, the ignition resistance of fireproof titanium alloys was improved.

Key words:  aero-engine      fireproof titanium alloy      fireproof performance      ignition resistance performance      fused oxide      titanium fire     
Received:  20 August 2013     
ZTFLH:  TG146.2  

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00501     OR     https://www.ams.org.cn/EN/Y2014/V50/I5/575

[1] Tuominen S, Wojcik C. Adv Mater Process, 1995; (4): 23
[2] Berczik D M. UK Patent, GB-2238057 A, 1991
[3] Борисова Е А, Скляров Н М. Горение и Пожаробезопасность Титановых Сплавов. Москва: ВИАМ, 2002: 15
[4] Zhao Y Q, Zhu K Y, Qu H L, Wu H, Zhou L, Zhou Y G, Zeng W D, Yu H Q. Mater Sci Eng, 2000; A282: 153
[5] Sun F S, Lavernia E J. Mater Eng Perform, 2005; 14: 784
[6] Huang X,Zhu Z S,Wang H H. Advanced Aeronautical Titanium Alloys and Applications. Beijing: National Defense Industry Press, 2012: 276
(黄 旭,朱知寿,王红红. 先进航空钛合金材料与应用. 北京: 国防工业出版社, 2012: 276)
[7] Брейтер А Л, Мальцев В М, Попов Е И. Физика горения и взрыва, 1977; 13: 558
[8] Ягодников Д А. Воспламенение и Горение Порошкообраозных Металлов. Москва: Издательство МГТУ, 2009: 168
[9] Merzhanov A G. AIAA J, 1975; 13: 209
[10] Rozenband V I, Vaganova N I. Combust Flame, 1992; 88: 113
[11] Andrzejak T A, Shafirovich E, Varma A. Propellants Explosives Pyrotechnics, 2009; 34: 53
[12] Beloni E, Dreizin E L. Combust Sci Technol, 2011; 183: 823
[13] Mi G B, Huang X, Cao J X, Cao C X. China Pat, 201218001209.1, 2012
(弭光宝, 黄 旭, 曹京霞, 曹春晓. 中国专利, 201218001209.1, 2012)
[14] Mi G B, Huang X, Cao J X, Wang B, Cao C X. China Pat, 201218003649.0, 2012
(弭光宝, 黄 旭, 曹京霞, 王 宝, 曹春晓. 中国专利, 201218003649.0, 2012)
[15] Mi G B, Huang X S, Li P J, Huang X, Cao J X, Cao C X. Trans Nonferrous Met Soc China, 2012; 22: 2409
[16] Mi G B, Huang X, Cao J X, Cao C X, Huang X S. Trans Nonferrous Met Soc China, 2013; 23: 2270
[17] Bhushan B. Introduction to Tribology. 2nd Ed., New York: Wiley, 2013: 79
[18] Gunaji M V, Sircar S, Beeson H D. Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres. Denver: ASTM Spec Tech Publ, 1995: 81
[19] Glassman I, Mellor A M, Sullivan H F, Laurendeau N M. Conference No.52 of Nato Advanced Group for Aerospace Research and Development. Paris: Proceedings, 1970: 19
[20] Gulino R, Bair S, Winer W O, Bhushan B. ASME J Trib, 1986; 108: 29
[21] Bhushan B. ASME J Trib, 1987; 109: 252
[22] Huang X. PhD Dissertation, Northwestern Polytechnic University, Xi'an, 1998
(黄 旭. 西北工业大学博士学位论文, 西安, 1998)
[23] Каракозов Э С. Диффузионная сварка титана. Москва: Металлургия, 1977: 53
[24] Болобов В И, Подлевских Н А. Физика горения и взрыва, 2007; 43: 39
[25] Болобов В И, Шнеерсон Я М, Лапин АЮ. Цветные металлы, 2011; 12: 98
[26] Франк-Каменеций Д А. Диффузия теплопередача в химической кинетике. Москва: Наука, 1967: 189
[27] Zhang Y H,Huang Z A. Combustion and Explosion. Beijing: Metallurgical Industry Press, 2011: 79
(张英华,黄志安. 燃烧与爆炸学. 北京: 冶金工业出版社, 2011: 79)
[28] Попель П С, Баум Б А. Металлы, 1986; 5: 47
[29] Mi G B, Cao J X, Huang X, Cao C X, Li P J. Sci China Phys Mech Astron, 2012; 55: 1371
[1] ZHANG Guoqing,ZHANG Yiwen,ZHENG Liang,PENG Zichao. Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application[J]. 金属学报, 2019, 55(9): 1133-1144.
No Suggested Reading articles found!