Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (6): 641-651    DOI: 10.3724/SP.J.1037.2013.00567
Original Article Current Issue | Archive | Adv Search |
ZHAO Jiuzhou 1), LI Lu 1), ZHANG Xianfei 2)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159
Download:  HTML  PDF(3006KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Dendritic structure is the most frequently observed solidification microstructure of alloys. It has a dominant effect on the mechanical properties of alloys. The formation of the dendritic microstructure has attracted extensive attentions. It has been demonstrated that numerical simulation is a powerful tool for studying the microstructure formation during the solidification of alloys. Various models, such as the front-tracking (FT) model, the phase-field (PF) model and the cellular automaton (CA) model have been proposed to simulate the formation process of dendrite. Compared with other methods, CA is an effective numerical simulation method with high calculation efficiency and clear physical meaning. It is more suitable to be applied to simulate the formation kinetics of the dendritic microstructure of alloys. It has been widely applied in the investigation of the solidification of alloys. This paper makes a detailed introduction to the common process of CA modeling and simulation, the constructing method of CA model and the calculation method for some key parameters such as nucleation rate of nuclei, growth velocity of dendrite, etc. A review of the development of the CA models for the solidification of alloys is carried out. The features and applications of the existing CA models are critically assessed. The applications of the CA models in the investigations of the practical solidification process are summarized. The problems to be solved and the future development of CA models are also pointed out.
Key words:  alloy      solidification microstructure      dendrite      numerical simulation      cellular automaton     
Received:  09 September 2013     
ZTFLH:  TG111.4  
Fund: Supported by National Natural Science Foundation of China (Nos.51071159, 51271185 and 51031003)
Corresponding Authors:  ZHAO Jiuzhou, professor, Tel: (024)23971918, E-mail:   

Cite this article: 


URL:     OR

[1] Wheeler A A, Murray B T, Schaefer R J. Physica, 1993; 66D: 243
[2] Warren J A, Boettinger W J. Acta Metall Mater, 1995; 43: 689
[3] Zhang R J, Jing T, Jie W Q, Liu B C. Acta Mater, 2006; 54: 2235
[4] McCarthy J F, Blake N W. Acta Mater, 1996; 44: 2093
[5] Juric D, Tryggvason G. J Comput Phys, 1996; 123: 127
[6] Zhao P, Venere M, Heinrich J C, Porier D R. J Comput Phys, 2003; 183: 434
[7] Liu Y, Xu Q Y, Liu B C. Tsinghua Sci Technol, 2006; 5: 495
[8] Jiang H X, Zhao J Z. Acta Metall Sin, 2011; 47: 1099
(江鸿翔,赵九洲. 金属学报, 2011; 47: 1099)
[9] Turnbull D J. J Chem Phys, 1952; 20: 411
[10] Hunt J D. Mater Sci Eng, 1984; 65: 75
[11] Stefanescu D M, Upadhya G, Bandyopadhyay D. Metall Trans, 1990; 21A: 997
[12] Oldfield W. Trans ASM, 1966; 59: 945
[13] Rappaz M, Gandin C A. Acta Metall Mater, 1993; 41: 345
[14] Yao X, Dargusch M S, Dahle A K, Davidson C J, Stjohn D H. J Mater Res, 2008; 23: 2312
[15] Cho S H, Okanem T, Umeda T. Sci Technol Adv Mater, 2002; 2: 241
[16] Dong H B, Lee P D. Acta Metall, 2005; 53: 659
[17] Kurz W, Giovanola B, Trivedi R. Acta Metall, 1986; 34: 823
[18] Zhu M F, Kim J M, Hong C P. ISIJ Int, 2001; 41: 992
[19] Sekerka R F. J Cryst Growth, 2004; 264: 530
[20] Beltran-Sanchez L, Stefanescu D M. Metall Mater Trans, 2004; 35A: 2471
[21] Pan S Y, Zhu M F. Acta Metall, 2010; 58: 340
[22] Gandin C A, Rappaz M. Acta Metall Mater, 1994; 42: 2233
[23] Rappaz M, Gandin C A, Desbiolles J L, Thevoz P. Metall Mater Trans, 1996; 27A: 695
[24] Zhu M F, Lee S Y, Hong C P. Phys Rev, 2004; 69E: 061610
[25] Yin H, Felicelli S D, Wang L. Acta Mater, 2011; 59: 3124
[26] Gandin C A, Rappaz M. Acta Mater, 1997; 45: 2187
[27] Dong H B, Lee P D. Acta Mater, 2005; 53: 659
[28] Brown S G R, Spittle J A, Williams T. Acta Metall Mater, 1994; 42: 2893
[29] Spittle J A, Brown S G R. J Mater Sci, 1995; 30: 3989
[30] Gandin C A, Rappaz M, Tintillier R. Metall Mater Trans, 1993; 24: 467
[31] Gandin C A, Desbiolles J L, Rappaz M, Thevoz P. Metall Mater Trans, 1999; 30A: 3153
[32] Dilthey U, Pavlik V, Reichel T. In: Cerjak H, Bhadeshia H K D H eds., Mathematical Modeling of Weld Phenomena 3. London: The Institute of Materials, 1997: 85
[33] Sasikumar R, Sreenivasan R. Acta Metall Mater, 1994; 42: 2381
[34] Kothe D B, Mjolsness R C, Torrey M D. Ripple: A Computer Program for Incompressible Flows with Free Surface. Los Alamos: Los Alamos National Lab, 1991: 1
[35] Beltran-Sanchez L, Stefanescu D M. Metall Mater Trans, 2003; 34A: 367
[36] Nastac L. Acta Mater, l999; 47: 4253
[37] Beltran-Sanchez L, Stefanescu D M. Metall Mater Trans, 2004; 35A: 2471
[38] Zhu M F, Hong C P. ISIJ Int, 2001; 41: 436
[39] Zhu M F, Hong C P. Phys Rev, 2002; 66: 155428
[40] Zhu M F, Hong C P. ISIJ Int, 2002; 42: 520
[41] Zhu M F, Dai T, Li C Y, Hong C P. Sci China, 2005; 35E: 67
(朱鸣芳, 戴 挺, 李成允, 洪俊杓. 中国科学, 2005; 35E: 673)
[42] Zhu M F, Stefanescu D M. Acta Mater, 2007; 55: 1741
[43] Li Q, Li D Z, Qian B N. Acta Metall Sin, 2004; 40: 634
(李 强, 李殿中, 钱百年. 金属学报, 2004; 40: 634)
[44] Li Q, Li D Z, Qian B N. Acta Metall Sin, 2004; 40: 1215
(李 强, 李殿中, 钱百年. 金属学报, 2004; 40: 1215)
[45] Wei L, Lin X, Wang M, Huang W D. Acta Phys Sin, 2012; 61: 098104
(魏 雷, 林 鑫, 王 猛, 黄卫东. 物理学报, 2012; 61: 098104)
[46] Lin X, Wei L, Shan B W, Huang W D. In: Howard J ed., Proc 5th Decennial International Conference on Solidification Processing, Sheffield: University of Sheffield, 2007: 53
[47] Lin X, Wei L, Wang M, Huang W D. Mater Sci Forum, 2010: 654-656: 1528
[48] Fu Z N, Xu Q Y, Xiong S M. Chin J Nonferrous Met, 2007; 17: 1567
(付振南, 许庆彦, 熊守美. 中国有色金属学报, 2007; 17: 1567)
[49] Marek M. Physica, 2013; 253D: 73
[50] Li D Z, Su S F, Xu X H, Wang J Q, Chen J Z, Liu Y M. Foundary, 1997; (8): 1
(李殿中, 苏仕方, 徐雪华, 王君卿, 陈家芝, 刘一鸣. 铸造, 1997; (8): 1)
[51] Li D Z, Du Q, Hu Z Y, Li Y Y. Acta Metall Sin, 1999; 39: 1201
(李殿中, 杜 强, 胡志勇, 李依依. 金属学报, 1999; 39: 1201)
[52] Kang X H, Du Q, Li D Z. Acta Metall Sin, 2004; 40: 452
(康秀红, 杜 强, 李殿中. 金属学报, 2004; 40: 452)
[53] Yin H, Felicelli S D. Acta Mater, 2010; 58: 1455
[54] Shi Y F, Xu Q Y, Gong M, Liu B C. Acta Metall Sin, 2011; 47: 620
(石玉峰, 许庆彦, 龚 铭, 柳百成. 金属学报, 2011; 47: 620)
[55] Zaeem M A, Yin H, Felicelli S D. J Mater Sci Technol, 2012; 28: 137
[56] Zaeem M A, Yin H, Felicelli S D. Appl Math Modell, 2013; 37: 3495
[57] Jarvis D J, Brown S G R, Spittle J A. Mater Sci Technol, 2000; 16: 1420
[58] Zhu M F, Cao W, Chen S L, Hong C P, Chang Y A. J Phase Equilib Diffus, 2007; 28: 130
[59] Zhang X F. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012
(张显飞. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[1] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[2] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[3] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[4] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[5] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[6] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[7] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[8] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[9] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[10] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[11] SUN Xinjun,LIU Luojin,LIANG Xiaokai,XU Shuai,YONG Qilong. TiC Precipitation Behavior and Its Effect on Abrasion Resistance of High Titanium Wear-Resistant Steel[J]. 金属学报, 2020, 56(4): 661-672.
[12] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[13] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[14] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[15] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
No Suggested Reading articles found!