Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (6): 641-651    DOI: 10.3724/SP.J.1037.2013.00567
Current Issue | Archive | Adv Search |
DEVELOPMENT OF CELLULAR AUTOMATON MODELS AND SIMULATION METHODS FOR SOLIDIFICATION OF ALLOYS
ZHAO Jiuzhou1(), LI Lu1, ZHANG Xianfei2
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159
Cite this article: 

ZHAO Jiuzhou, LI Lu, ZHANG Xianfei. DEVELOPMENT OF CELLULAR AUTOMATON MODELS AND SIMULATION METHODS FOR SOLIDIFICATION OF ALLOYS. Acta Metall Sin, 2014, 50(6): 641-651.

Download:  HTML  PDF(3006KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Dendritic structure is the most frequently observed solidification microstructure of alloys. It has a dominant effect on the mechanical properties of alloys. The formation of the dendritic microstructure has attracted extensive attentions. It has been demonstrated that numerical simulation is a powerful tool for studying the microstructure formation during the solidification of alloys. Various models, such as the front-tracking (FT) model, the phase-field (PF) model and the cellular automaton (CA) model have been proposed to simulate the formation process of dendrite. Compared with other methods, CA is an effective numerical simulation method with high calculation efficiency and clear physical meaning. It is more suitable to be applied to simulate the formation kinetics of the dendritic microstructure of alloys. It has been widely applied in the investigation of the solidification of alloys. This paper makes a detailed introduction to the common process of CA modeling and simulation, the constructing method of CA model and the calculation method for some key parameters such as nucleation rate of nuclei, growth velocity of dendrite, etc. A review of the development of the CA models for the solidification of alloys is carried out. The features and applications of the existing CA models are critically assessed. The applications of the CA models in the investigations of the practical solidification process are summarized. The problems to be solved and the future development of CA models are also pointed out.

Key words:  alloy      solidification microstructure      dendrite      numerical simulation      cellular automaton     
Received:  09 September 2013     
ZTFLH:  TG111.4  
  TG113.12  
Fund: Supported by National Natural Science Foundation of China (Nos.51071159, 51271185 and 51031003)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00567     OR     https://www.ams.org.cn/EN/Y2014/V50/I6/641

Fig.1  Neighbors of the cell A in 2D square mesh

(a) Von Neumann (b) Moore

Fig.2  Fig.2 Neighbors of the cell A in 3D cubic mesh[8]

(a) the nearest neighbors of the cell A (I)

(b~d) the second nearest neighbors of the cell A (II)

(e, f) the third nearest neighbors of the cell A (III)

Fig.3  Distribution of the heterogeneous nucleation sites on the mold wall and in the bulk melt (The subscripts s and v represent the nucleation on the mold wall and in the bulk melt, respectively. ΔTs, max and ΔTv, max are mean undercooling, ΔTs, σ and ΔTv, σ are standard deviation, ns and nv are total density of grains)[13]
Fig.4  Schematic diagram of the S/L interface growth direction( n ^ is the normal vector of the S/L interface, φ is the angle between n ^ and x axis, θ0 is the anglebetween the crystallographic orientation and x axis)
Fig.5  Schematic illustration of the 2D square algorithm (L(t) is the radius of grain, q is the angle between the preferred orientation and the x axis)[13]
Fig.6  Illustration of the calculation of solid fraction of an interfacial cell ( Δs is the size of the cell, vx and vyare the velocities along the coordinate axis)
Fig.7  Calculation of the increment in solid fraction by the motion of planar interface along the normal to the surface (Once the interface covers the distance Lφ ,the cell status becomes solid, n ^ is the normal vector of solid (S) / liquid (L) interface)
Fig.8  Microstructural evolution in directionally solidified Al-11.6%Cu-0.85%Mg alloy (The temperature gradient in front of the S/L interface is 10 K/mm)[59]

(a) t=1.3 s (b) t=2.7 s (c) t=4 s (d) t=8.7 s (e) t=10.7 s

Fig.9  Dendrite spacing l for directionally solidified Al-11.6Cu-0.85Mg alloys[59]
Fig.10  Dendrite tip velocities calculated using different diffusion coefficients (Line 1 is the results calculated using the diffusion coefficients considering solute interactions, line 2 is the results calculated using the diffusion coefficients neglecting solute interactions)[59]
[1] Wheeler A A, Murray B T, Schaefer R J. Physica, 1993; 66D: 243
[2] Warren J A, Boettinger W J. Acta Metall Mater, 1995; 43: 689
[3] Zhang R J, Jing T, Jie W Q, Liu B C. Acta Mater, 2006; 54: 2235
[4] McCarthy J F, Blake N W. Acta Mater, 1996; 44: 2093
[5] Juric D, Tryggvason G. J Comput Phys, 1996; 123: 127
[6] Zhao P, Venere M, Heinrich J C, Porier D R. J Comput Phys, 2003; 183: 434
[7] Liu Y, Xu Q Y, Liu B C. Tsinghua Sci Technol, 2006; 5: 495
[8] Jiang H X, Zhao J Z. Acta Metall Sin, 2011; 47: 1099
(江鸿翔,赵九洲. 金属学报, 2011; 47: 1099)
[9] Turnbull D J. J Chem Phys, 1952; 20: 411
[10] Hunt J D. Mater Sci Eng, 1984; 65: 75
[11] Stefanescu D M, Upadhya G, Bandyopadhyay D. Metall Trans, 1990; 21A: 997
[12] Oldfield W. Trans ASM, 1966; 59: 945
[13] Rappaz M, Gandin C A. Acta Metall Mater, 1993; 41: 345
[14] Yao X, Dargusch M S, Dahle A K, Davidson C J, Stjohn D H. J Mater Res, 2008; 23: 2312
[15] Cho S H, Okanem T, Umeda T. Sci Technol Adv Mater, 2002; 2: 241
[16] Dong H B, Lee P D. Acta Metall, 2005; 53: 659
[17] Kurz W, Giovanola B, Trivedi R. Acta Metall, 1986; 34: 823
[18] Zhu M F, Kim J M, Hong C P. ISIJ Int, 2001; 41: 992
[19] Sekerka R F. J Cryst Growth, 2004; 264: 530
[20] Beltran-Sanchez L, Stefanescu D M. Metall Mater Trans, 2004; 35A: 2471
[21] Pan S Y, Zhu M F. Acta Metall, 2010; 58: 340
[22] Gandin C A, Rappaz M. Acta Metall Mater, 1994; 42: 2233
[23] Rappaz M, Gandin C A, Desbiolles J L, Thevoz P. Metall Mater Trans, 1996; 27A: 695
[24] Zhu M F, Lee S Y, Hong C P. Phys Rev, 2004; 69E: 061610
[25] Yin H, Felicelli S D, Wang L. Acta Mater, 2011; 59: 3124
[26] Gandin C A, Rappaz M. Acta Mater, 1997; 45: 2187
[27] Dong H B, Lee P D. Acta Mater, 2005; 53: 659
[28] Brown S G R, Spittle J A, Williams T. Acta Metall Mater, 1994; 42: 2893
[29] Spittle J A, Brown S G R. J Mater Sci, 1995; 30: 3989
[30] Gandin C A, Rappaz M, Tintillier R. Metall Mater Trans, 1993; 24: 467
[31] Gandin C A, Desbiolles J L, Rappaz M, Thevoz P. Metall Mater Trans, 1999; 30A: 3153
[32] Dilthey U, Pavlik V, Reichel T. In: Cerjak H, Bhadeshia H K D H eds., Mathematical Modeling of Weld Phenomena 3. London: The Institute of Materials, 1997: 85
[33] Sasikumar R, Sreenivasan R. Acta Metall Mater, 1994; 42: 2381
[34] Kothe D B, Mjolsness R C, Torrey M D. Ripple: A Computer Program for Incompressible Flows with Free Surface. Los Alamos: Los Alamos National Lab, 1991: 1
[35] Beltran-Sanchez L, Stefanescu D M. Metall Mater Trans, 2003; 34A: 367
[36] Nastac L. Acta Mater, l999; 47: 4253
[37] Beltran-Sanchez L, Stefanescu D M. Metall Mater Trans, 2004; 35A: 2471
[38] Zhu M F, Hong C P. ISIJ Int, 2001; 41: 436
[39] Zhu M F, Hong C P. Phys Rev, 2002; 66: 155428
[40] Zhu M F, Hong C P. ISIJ Int, 2002; 42: 520
[41] Zhu M F, Dai T, Li C Y, Hong C P. Sci China E, 2005; 35E: 67
(朱鸣芳, 戴 挺, 李成允, 洪俊杓. 中国科学E, 2005; 35: 673) url:
[42] Zhu M F, Stefanescu D M. Acta Mater, 2007; 55: 1741
[43] Li Q, Li D Z, Qian B N. Acta Metall Sin, 2004; 40: 634
(李 强, 李殿中, 钱百年. 金属学报, 2004; 40: 634)
[44] Li Q, Li D Z, Qian B N. Acta Metall Sin, 2004; 40: 1215
(李 强, 李殿中, 钱百年. 金属学报, 2004; 40: 1215)
[45] Wei L, Lin X, Wang M, Huang W D. Acta Phys Sin, 2012; 61: 098104
(魏 雷, 林 鑫, 王 猛, 黄卫东. 物理学报, 2012; 61: 098104)
[46] Lin X, Wei L, Shan B W, Huang W D. In: Howard J ed., Proc 5th Decennial International Conference on Solidification Processing, Sheffield: University of Sheffield, 2007: 53
[47] Lin X, Wei L, Wang M, Huang W D. Mater Sci Forum, 2010: 654-656: 1528
[48] Fu Z N, Xu Q Y, Xiong S M. Chin J Nonferrous Met, 2007; 17: 1567
(付振南, 许庆彦, 熊守美. 中国有色金属学报, 2007; 17: 1567)
[49] Marek M. Physica, 2013; 253D: 73
[50] Li D Z, Su S F, Xu X H, Wang J Q, Chen J Z, Liu Y M. Foundary, 1997; (8): 1
(李殿中, 苏仕方, 徐雪华, 王君卿, 陈家芝, 刘一鸣. 铸造, 1997; (8): 1)
[51] Li D Z, Du Q, Hu Z Y, Li Y Y. Acta Metall Sin, 1999; 39: 1201
(李殿中, 杜 强, 胡志勇, 李依依. 金属学报, 1999; 39: 1201)
[52] Kang X H, Du Q, Li D Z. Acta Metall Sin, 2004; 40: 452
(康秀红, 杜强, 李殿中. 金属学报, 2004; 40: 452)
[53] Yin H, Felicelli S D. Acta Mater, 2010; 58: 1455
[54] Shi Y F, Xu Q Y, Gong M, Liu B C. Acta Metall Sin, 2011; 47: 620
(石玉峰, 许庆彦, 龚 铭, 柳百成. 金属学报, 2011; 47: 620)
[55] Zaeem M A, Yin H, Felicelli S D. J Mater Sci Technol, 2012; 28: 137
[56] Zaeem M A, Yin H, Felicelli S D. Appl Math Modell, 2013; 37: 3495
[57] Jarvis D J, Brown S G R, Spittle J A. Mater Sci Technol, 2000; 16: 1420
[58] Zhu M F, Cao W, Chen S L, Hong C P, Chang Y A. J Phase Equilib Diffus, 2007; 28: 130
[59] Zhang X F. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012
(张显飞. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[6] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[7] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[8] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[9] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[10] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[11] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[12] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[13] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[14] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[15] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
No Suggested Reading articles found!