Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (8): 905-912    DOI: 10.11900/0412.1961.2014.00057
Current Issue | Archive | Adv Search |
EFFECTS OF O, N AND Ni CONTENTS ON HOT PLASTICITY OF 0Cr25Ni7Mo4N DUPLEX STAINLESS STEEL
CHEN Yulai1, ZHANG Tairan1, WANG Yide2, LI Jingyuan2()
1 Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

CHEN Yulai, ZHANG Tairan, WANG Yide, LI Jingyuan. EFFECTS OF O, N AND Ni CONTENTS ON HOT PLASTICITY OF 0Cr25Ni7Mo4N DUPLEX STAINLESS STEEL. Acta Metall Sin, 2014, 50(8): 905-912.

Download:  HTML  PDF(7887KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to identity the effect of narrow composition control on the hot plasticity of duplex stainless steel, hot rolling test of OCr25Ni7Mo4N steels with various oxygen, nitrogen and nickel contents were performed at 1200 ℃ for 4 steps. The microstructures and inclusions were observed by OM, SEM and EBSD. The steels with the lowest oxygen, nitrogen and nickel contents showed excellent hot plasticity. The inclusions in the steel with 0.0059% oxygen were mainly Al2O3 and MgO·Al2O3, which distributed in the grain interior and did no harm to the hot plasticity of the steel. The steels containing 0.038% and 0.046% oxygen actually cracked at the sheet edge during hot rolling, which resulted from the large inclusion particles of Cr2O3 and MnO2 at the α/γ boundary. Furthermore, the reason for more serious cracking occurred in the steel containing 0.038% oxygen than that containing 0.046% oxygen was its relatively higher contents of nitrogen and nickel, making γ volume fraction of the steel as high as 60% in the hot rolling state. Excessive γ reduced its total strain, so that the inadequate stain did not induce the recrystallization of γ phase, which resulted in hot rolling cracking finally.

Key words:  0Cr25Ni7Mo4N duplex stainless steel      phase proportion      oxide inclusion      hot plasticity     
Received:  27 January 2014     
ZTFLH:  TG337.5  
  TG142.71  
Fund: Supported by National Natural Science Foundation of China (No.51174026), National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period (No.2012BA-E04B02)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00057     OR     https://www.ams.org.cn/EN/Y2014/V50/I8/905

Steel C Cr Ni Mo Mn Si N P S Al O Fe
No.1 0.027 25.3 6.72 4.18 0.65 0.66 0.25 0.025 0.0040 0.098 0.0059 Bal.
No.2 0.015 24.7 8.33 4.06 0.08 0.16 0.34 0.012 0.0067 0.093 0.038 Bal.
No.3 0.012 23.9 6.43 4.38 0.17 0.18 0.29 0.011 0.0076 0.120 0.0465 Bal.
SAF 2507 ≤0.03 24.0~ 6.0~ 3.0~ ≤1.2 ≤1.0 0.24~ ≤0.035 - - - Bal.
26.0 8.0 5.0 0.32
Table 1  Chemical compositions of tested steels and SAF 2507 steel
Fig.1  Morphologies of 0Cr25Ni7Mo4N duplex stainless steel sheets after hot rolling at 1200 ℃ for 4 steps
Fig.2  Effect of γ/α phase proportion on hot plasticity of duplex stainless steel[1]
Steel Cast Before rolled After rolled
No.1 41.47 49.02 37.55
No.2 29.51 36.23 27.93
No.3 40.53 45.39 32.01
Table 2  Ferrite contents of tested 0Cr25Ni7Mo4N duplex stainless steels at different processes
Fig.3  OM images of No.1 (a, d), No.2 (b, e) and No.3 (c, f) 0Cr25Ni7Mo4N duplex stainless steels at casting state (a~c) and before hot rolling (d~e) (Inset in Fig.3d shows the high magnified image of α, γ and Cr2N)
Fig.4  High contrast SEM images of inclusions in tested steels No.1 (a), No.2 (b) and No.3 (c)
Steel Fraction of inclusions with different sizes / % Average Total
diameter / μm
Number / mm-2
0~5 μm 5~10 μm 10~15 μm >15 μm
No.1 84.21 15.79 0 0 4.04 197
No.2 17.86 21.45 49.98 10.71 11.02 554
No.3 18.02 27.03 41.44 13.51 10.68 1034
Table 3  Sizes and amounts of inclusions in tested steels
Fig.5  SEM images (left) and corresponding EDS analyses (right) of inclusions in steels No.1 (a, b), No.2 (c) and No.3 (d)
Fig.6  Location of inclusions in steels No.1 (a) and No.2 (b)
Fig.7  Morphology (left) and EDS analysis (right) of the inclusions at the crack area of No.2 hot rolled sheet
Steel Cast Before Rolled
No.1 300.6 301.6
No.2 291.3 303.9
No.3 298.0 305.7
Table 4  Microhardness of γ phase in tested steels
Fig.8  EBSD morphologies and deformation distributions at the side of 0Cr25Ni7Mo4N duplex stainless steel sheets
[1] Wu J. Duplex Stainless Steel. Beijing: Metallurgy Industry Press, 1999: 1
(吴 玖. 双相不锈钢. 北京: 冶金工业出版社, 1999: 1)
[2] Fang Y L, Liu Z Y, Zhang W N, Wang G D, Song H M, Jiang L Z. Acta Metall Sin, 2010; 46: 641
(方轶琉, 刘振宇, 张维娜, 王国栋, 宋红梅, 江来珠. 金属学报, 2010; 46: 641)
[3] Fan G W, Liu J, Han P D, Qiao G J. Mater Sci Eng, 2009; A515: 108
[4] Han Y, Zou D N, Chen Z Y, Fan G W, Zhang W. Mater Charact, 2011; 62: 198
[5] Chen L, Wang L M, Du X J. Acta Metall Sin, 2010; 46: 52
(陈 雷, 王龙妹, 杜晓建. 金属学报, 2010; 46: 52)
[6] Iza-Mendia A, Pinol-Juez A, Urcola J J. Metall Mater Trans, 1998; 29A: 2975
[7] Alvarez-Armas I, Marinelli M C, Herenu S. Acta Mater, 2006; 54: 5041
[8] Jia N, Lin P R, Wang Y D. Acta Mater, 2008; 56: 782
[9] Weatherly G C, Hamble P, Borland D. Acta Metall, 1979; 27: 1815
[10] Dahmen U, Ferguson P, Westmacott K H. Acta Metall, 1984; 32: 803
[11] Qiu D, Zhang W Z. Acta Mater, 2007; 55: 6754
[12] Song Z, Zheng W, Feng H. J Iron Steel Res Int, 2013; 20: 83
[13] Song Z G, Wu J, Lin X J. J Iron Steel Res Int, 2011; 18: 64
[14] Fang Y L, Liu Z Y, Song H M. Mater Sci Eng, 2009; A526: 128
[15] Jiang Z L, Wu Y, Chen X Y, Bai F M, Liu X Y, Huang T G. J Mater Eng, 2002; (5): 30
(姜忠良, 吴 严, 陈秀云, 白飞明, 刘秀赢, 黄铁光. 材料工程, 2002; (5): 30)
[16] Chen P D, Wang J H, Ma Z W. Phys Examination Test, 2012; 30(3): 11
(陈培敦, 王俊海, 马正伟. 物理测试, 2012; 30(3): 11)
[17] Shen P, Yan H T, Yang Z, Yuan H. Hot Working Technol, 2013; 42(4): 50
(申 鹏, 颜海涛, 杨 振, 袁 辉. 热加工工艺, 2013; 42(4): 50)
[18] Wu Z Z, Song Z G, Zheng W J, Chen B, Lu J S. Spec Steel, 2006; 27(4): 11
(吴忠忠, 宋志刚, 郑文杰, 陈 斌, 陆建生. 特殊钢, 2006; 27(4): 11)
[19] Yang Q X, Wu J, Zhao H. Trans Mater Heat Treat, 2006; 26: 124
(杨庆祥, 吴 晶, 赵 宏. 材料热处理学报, 2006; 26: 124)
[1] Tongbang AN,Jinshan WEI,Jiguo SHAN,Zhiling TIAN. Influence of Shielding Gas Composition on Microstructure Characteristics of 1000 MPa Grade Deposited Metals[J]. 金属学报, 2019, 55(5): 575-584.
[2] Wen YANG,Lifeng ZHANG,Ying REN,Haojian DUAN,Ying ZHANG,Xianghui XIAO. QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT[J]. 金属学报, 2016, 52(2): 217-223.
[3] Tongbang AN,Zhiling TIAN,Jiguo SHAN,Jinshan WEI. EFFECT OF SHIELDING GAS ON MICROSTRUCTURE AND PERFORMANCE OF 1000 MPa GRADE DEPOSITED METALS[J]. 金属学报, 2015, 51(12): 1489-1499.
[4] PAN Xiaolin WANG Bo SUN Wenru TU Ganfeng GUO Shouren HU Zhuangqi. EFFECT OF HOMOGENIZATION TREATMENT ON THE HOT DEFORMATION OF GH742 ALLOY[J]. 金属学报, 2012, 48(11): 1403-1408.
No Suggested Reading articles found!