Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (12): 1549-1557    DOI: 10.3724/SP.J.1037.2013.00290
Current Issue | Archive | Adv Search |
EFFECT OF TEMPERING TEMPERATURE ON MICRO-STRUCTURE AND PROPERTY OF 690 MPa GRADE OCEAN ENGINEERING STEEL UNDER FAST HEATING RATE
ZHANG Jie1), CAI Qingwu2), WU Huibin2), FAN Yanqiu3)
1) Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024
2) Research Institute of Metallurgy Engineering, University of Science and Technology Beijing, Beijing 100083
3) Technical Research Institute of Shougang, Beijing 100043
Cite this article: 

ZHANG Jie, CAI Qingwu, WU Huibin, FAN Yanqiu. EFFECT OF TEMPERING TEMPERATURE ON MICRO-STRUCTURE AND PROPERTY OF 690 MPa GRADE OCEAN ENGINEERING STEEL UNDER FAST HEATING RATE. Acta Metall Sin, 2013, 49(12): 1549-1557.

Download:  PDF(5541KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ocean engineering steel has been rapidly developed with the exploration of ocean resourses. A 690 MPa grade low carbon bainite steel was designed for ocean engineering, to upgrade performance by microstructure control and the refinement and dispersion control of precipitates. This steel was tempered on--line with rapid heating rate after control rolling and accelerated cooling process. The results show that the mechanical properties, especially the strength--toughness balance, are strongly influenced by the transformation of untransformed austenite and the condition of precipitates. When fast tempering at 550℃, microstructure recovered and few precipitates appeared, bringing strength down seriously, untransformed austenite turned into martensite/austenite (M/A) islands on cooling. When the tempering temperature reached 600℃, the size of the M/A islands transformed from untransformed austenite decreased slightly, Cu and Nb/Ti precipitates increased greatly, bringing an apparent improvement in strength. When tempering temperature reached 660℃, precipitates got coarsened and made the strength decreases, the untransformed austenite formed retained austenite film between the laths, improving toughness and making the best strength—toughness balance. When the tempering temperature reached the top at 700℃, the precipitates got further coarsened, the untransformed austenite on cooling turned into large M/A islands, bringing toughness and the strength—toughness balance down again. In general consideration, fast heating tempering at 600—660℃ could make the steel has the best strength—toughness balance.

Key words:  heating rate      tempering temperature      ocean engineering      untransformed austenite      precipitate     
Received:  28 May 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00290     OR     https://www.ams.org.cn/EN/Y2013/V49/I12/1549

[1] Di G B, Liu Z Y, Ma Q S.  J Iron Steel Res, 2010; 22(7): 51

(狄国标, 刘振宇, 麻庆申. 钢铁研究学报, 2010; 22(7): 51)
[2] Tang D, Wu H B.  Steel Rolling, 2012; 29(2): 1
(唐狄, 武会宾. 轧钢, 2012; 29(2): 1)
[3] He X L, Shang C J.  High Performance Low Carbon Bainite Steel.Beijing: Metallugical Industry Press, 2008: 148
(贺信莱, 尚成嘉. 高性能低碳贝氏体钢. 北京: 冶金工业出版社, 2008: 148)
[4] Gao K, Wang L D, Zhu M, Chen J D, Shi Y J, Kang M K.  Acta Metall Sin, 2007; 43: 315
(高宽, 王六定, 朱明, 陈景东, 施易军, 康沫狂. 金属学报, 2007; 43: 315)
[5] Shang C J, Wang X M, Zhou Z J, Liang X, Miao C L, He X L.  Acta Metall Sin, 2008; 44: 287
(尚成嘉, 王学敏, 周召槿, 梁鑫, 缪成亮, 贺信莱. 金属学报, 2008; 44: 287)
[6] Li X C, Xie Z J, Wang X L, Wang X M, Shang C J.  Acta Metall Sin, 2013; 49: 167
(李秀程, 谢振家, 王学林, 王学敏, 尚成嘉. 金属学报, 2013; 49: 167)
[7] Wan D C, Yu W, Li X L, Zhang J, Wu H B, Cai Q W.  Acta Metall Sin, 2012; 48: 455
(万德成, 余伟, 李晓林, 张杰, 武会宾, 蔡庆伍. 金属学报, 2012; 48: 455)
[8] Zhang J, Cai Q W, Wu H B, Zhang K, Wu B.  J Iron Steel Res Int, 2012; 19(3): 67
[9] Li X L, Yu W, Zhu A L, Wu H B, Wan D C, Zhang J.  Trans Mater Heat Treat, 2012; 33(12): 100
(李晓林, 余伟, 朱爱玲, 武会宾, 万德成, 张杰. 材料热处理学报, 2012; 33(12): 100)
[10] Yakubtsov I A, Boyd J D.  Mater Sci Technol, 2008; 24: 221
[11] Zhang J, Cai Q W, Wu H B, Fan X H, Zhang M J.  J Univ Sci Technol, 2012; 34: 657
(张杰, 蔡庆伍, 武会宾, 樊学华, 张明洁. 北京科技大学学报, 2012; 34: 657)
[12] Hayashi K, Nagao A, Matsuda Y.  JFE Technol Report, 2008; (11): 19
[13] Okatsu M, Shikanai N, Kondo J.  JFE Technol Report, 2008; (12): 8
[14] Zhang J, Cai Q W, Fan Y Q, Wu H B.  Trans Mater Heat Treat, 2012; 33(4): 58
(张杰, 蔡庆伍, 樊艳秋, 武会宾. 材料热处理学报, 2012; 33(4): 58)
[15] Wu H B, Shang C J, Zhao Y T, Yang S W, Wang X M, He X L.  Iron Steel, 2005; 40(3): 62
(武会宾, 尚成嘉, 赵运堂, 杨善武, 王学敏, 贺信莱. 钢铁, 2005; 40(3): 62)
[16] Huang B, Lee C G.  Mater Sci Eng, 2010; A527: 4341
[17] Maleque M A, Poon Y M, Masjuki H H.  J Mater Process Technol, 2004; 153: 482
[18] Nie W J, Wang X M, Wu S J, Guan H L, Shang C J.  Sci China Technol Sci, 2012; 55: 1791
[19] Kumar A, Singh S B, Ray R K.  Mater Sci Eng, 2008; A474: 270
[20] You Y, Shang C J, Nie W J.  Mater Sci Eng, 2012; A558: 692
[21] Suzuki M, Sakui S, Kojima T, Watanabe I.  Quarterly J Jpn Weld Soc, 1987; (1): 209
[22] Nakanishi M, Komizo Y, Fukada Y.  Quarterly J Jpn Weld Soc, 1986; (2): 447
[23] Sakuma Y, Matlock D K, Krauss G.  Metall Trans, 1992; 23A: 1221
[24] Zhang F T, Jiang J, Song J X, Han C.  Acta Metall Sin, 1986; 22: B169
(张弗天, 姜健, 宋建先, 韩慈. 金属学报, 1986; 22: B169)
[25] Song Y Y, Li X Y, Rong L J, Ping D H, Yin F X, Li Y Y.  Mater Lett, 2010; 64: 1411
[26] Morris J W, Guo Z, Krenn C R, Kim Y H.  ISIJ Int, 2001; 41: 599
[27] Song Y Y, Ping D H, Yin F X, Li Y Y.  Mater Sci Eng, 2010; A527: 614
[28] Yang Y H, Cai Q W, Wu H B, Wang H.  Acta Metall Sin, 2009; 45: 270
(杨跃辉, 蔡庆伍, 武会宾, 王华. 金属学报, 2009; 45: 270)
[29] You Y, Shang C J, Chen L.  Mater Des, 2013; 43: 485
[30] Davis C L, King J E.  Metall Mater Trans, 1994; 25A: 563
[31] Misra R D K, Jia Z, O'Malley R, Jansto S J.  Mater Sci Eng, 2011; A528: 8772
[1] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[2] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[3] RUI Xiang, LI Yanfen, ZHANG Jiarong, WANG Qitao, YAN Wei, SHAN Yiyin. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. 金属学报, 2023, 59(12): 1590-1602.
[4] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[5] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[7] ZHOU Cheng, ZHAO Tan, YE Qibin, TIAN Yong, WANG Zhaodong, GAO Xiuhua. Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel[J]. 金属学报, 2022, 58(12): 1557-1569.
[8] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[9] GAO Yihan, LIU Gang, SUN Jun. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy[J]. 金属学报, 2021, 57(2): 129-149.
[10] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[11] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[12] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
[13] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[14] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[15] HUI Yajun, LIU Kun, WU Kemin, LI Qiuhan, NIU Tao, WU Qiaoling. Effect of Coiling Temperature on Microstructure and Mechanical Properties of 500 MPa Grade Hot Stamping Axle Housing Steel[J]. 金属学报, 2020, 56(12): 1605-1616.
No Suggested Reading articles found!