Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (2): 181-186    DOI: 10.3724/SP.J.1037.2012.00574
Current Issue | Archive | Adv Search |
EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO2 LASER DEEP PENETRATION WELDING
CHEN Gao, GAO Ziying
College of Science, Changchun University of Science and Technology, Changchun 130022
Cite this article: 

CHEN Gao, GAO Ziying. EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO2 LASER DEEP PENETRATION WELDING. Acta Metall Sin, 2013, 49(2): 181-186.

Download:  PDF(1139KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The porosity in the welded seam can be generated easily during the CO2 laser nonpenetration deep welding of low carbon steel, which affects the quality of welding. This research uses the mild steel as the object for the high quality requirements of welding. The advanced high-power CO2 laser generator was used for the welding experiment. The method of cutting cross-section of weld seam was used to analyze the porosity number and observe the morphology and location of porosity in the weld. The effects of such process parameters as shielding gas flow, laser beam inclination, laser power and welding speed on porosity generating were discussed. The research results show that the generating of porosity is due to the unstable collapse of the keyhole in the process of CO2 laser nonpenetration welding of low carbon steel. The porosity would be formed when the speed of bubble escaping form the weld pool is lower than the speed of melting metal solidifying. The results also show that with the increase of shielding gas flow, the porosity number presents a curve of increase firstly and then decrease. The lowest porosity number can be obtained at a 35 L/min of gas flow. With the increase of laser beam inclination angle, the porosity number shows a trend of decrease after increase. Under the condition of deeper penetration welding, the relatively lower porosity number can be obtained at the inclination angle of 22.5°.When the laser power is 4 kW, the porosity number is lowest. At the condition of lower welding speed, the bubble can escape easily for the longer existence period of melting weld pool. Thus lower porosity number and porosity number can be achieved. The porosity can be inhibited effectively at a welding speed of 0.75 m/min.

Key words:  Porosity      deep penetration welding      mild steel      processing parameter     
Received:  08 October 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00574     OR     https://www.ams.org.cn/EN/Y2013/V49/I2/181

[1] Mikhail S, Antti S, Vladislav S, Alexander F. Opt Laser Technol, 2012; 44: 2064


[2] Reisgen U, Schleser M, Mokrov O, Ahmed E. Opt Laser Technol, 2012; 44: 255

[3] Ruggiero A, Tricarico L, Olabi A G, Benyounis K Y. Opt Laser Technol, 2011; 43: 82

[4] Yilbas B, Arif A, Abdul A. Opt Laser Technol, 2010; 42: 760

[5] Chang B H, Bai S J, Du D, Zhang H, Zhou Y. J Mater Process Technol, 2010; 210: 885

[6] Mei L F, Chen G Y, Jin X Z, Zhang Y, Wu Q. Opt Lasers Eng, 2009; 47: 1117

[7] Emel T, Eddy D, Alfred D, Erdinc K. Mater Des, 2009; 30: 1193

[8] Zhang X D, Chen W Z, Eiji A, Fukuhisa M. Trans Chin Weld Inst, 2002; 23(6): 51

(张旭东, 陈武柱, 芦田荣次, 松田福久. 焊接学报, 2002; 23(6): 51)

[9] Zhao L, Zhang X D, Chen W Z, Bao G. Trans Chin Weld Inst, 2004; 25(1): 29

(赵琳, 张旭东, 陈武柱, 包刚. 焊接学报, 2004; 25(1): 29)

[10] Zhang X H, Zhang X D, Chen W Z, Lei H D. Laser Technol, 2007; 31: 419

(张晓红, 张旭东, 陈武柱, 雷华东. 激光技术, 2007; 31: 419)

[11] Zhao L, Zhang X D, Chen W Z, Wang J. Appl Laser, 2004; 24: 21

(赵琳, 张旭东, 陈武柱, 王晶. 应用激光, 2004; 24: 21)

[12] Wahba M, Kawahitoc Y, Kondohc K, Katayamac S. Mater Sci Eng, 2011; A529: 143

[13] Seto N, Katayama S, Matsunawa A. Q J Jpn Weld Soc, 2001; 19: 600

[14] Zhou J, Tsai H L. Int J Heat Mass Transfer, 2007; 50: 2217

[15] Haboudoua A, Peyrea P, Vannesb A B, Peixc G. Mater Sci Eng, 2003; A363: 40

[16] Hayashi T, Matsubayashi K, Katayama S, Nobuyuki A, Matsunawa A, Omori A. Q J Jpn Weld Soc, 2002; 20: 228

[17] Kawaguchi I, Tsukamoto S, Arakane G, Honda H. Q J Jpn Weld Soc, 2005; 23: 259

[18] Matsunawa A. Sci Technol Weld Join, 2001; 6: 351

[19] Kuo T Y, Jeng S L. J Phys, 2005; 38D: 722

[20] Alessandro A, Alessandro F, Leonardo O, Giampaolo C. Opt Laser Technol, 2012; 44: 1485

[21] Seto N, Katayama S, Matsunawa A. Weld Int, 2002; 16: 451

[22] Matsunawa A, Mizutani M, Katayama S, Seto N. Weld Int, 2003; 17: 431

 
[1] LIU Jian, PENG Qin, XIE Jianxin. Grain Structure and Metallurgical Defects Regulation of Selective Laser Melted René 88DT Superalloy[J]. 金属学报, 2021, 57(2): 191-204.
[2] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[3] Zhiming GAO, Wanqi JIE, Yongqin LIU, Haijun LUO. Formation Mechanism and Coupling Prediction of Microporosity and Inverse Segregation: A Review[J]. 金属学报, 2018, 54(5): 717-726.
[4] Dawei WANG,Shichao XIU. Effect of Bonding Temperature on the Interfacial Micro-structure and Performance of Mild Steel/Austenite Stainless Steel Diffusion-Bonded Joint[J]. 金属学报, 2017, 53(5): 567-574.
[5] Jie WU,Lei XU,Zhengguan LU,Yuyou CUI,Rui YANG. PREPARATION OF POWDER METALLURGY Ti-22Al-24Nb-0.5Mo ALLOYS ANDELECTRON BEAM WELDING[J]. 金属学报, 2016, 52(9): 1070-1078.
[6] Longfei CHEN,Yikun LUAN,Dianzhong LI,Yiyi LI. SOLID FEEDING MECHANISM AND ITS APPLICA-TION ON CASTINGS WITH LARGE HEIGHT-TO-DIAMETER RATIO[J]. 金属学报, 2016, 52(12): 1510-1516.
[7] Xianfei DING,Dongfang LIU,Yunrong ZHENG,Qiang FENG. EFFECT OF B MICRO-ALLOYING ON MICRO-POROSITIES IN AS-CAST HK40 ALLOYS[J]. 金属学报, 2015, 51(9): 1121-1128.
[8] YAN Yuncheng, DING Hongsheng, SONG Jinxia, KANG Yongwang, CHEN Ruirun, GUO Jingjie. EFFECT OF PROCESSING PARAMETERS ON SOLID-LIQUID INTERFACE OF Nb-Si BASE ALLOY FABRICATED BY ELECTROMAGNETIC COLD CRUCIBLE DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2014, 50(9): 1039-1045.
[9] YE Xinglong, LIU Feng, JIN Haijun. ELECTROCHEMICAL ACTUATION OF NANOPOROUS GOLD DEFORMED BY COMPRESSION[J]. 金属学报, 2014, 50(2): 252-258.
[10] MU Xin, WEI Jie, DONG Junhua, KE Wei. THE EFFECT OF SACRIFICIAL ANODE ON CORRO- SION PROTECTION OF Q235B STEEL IN SIMULATED TIDAL ZONE[J]. 金属学报, 2014, 50(11): 1294-1304.
[11] FU Xinxin, DONG Junhua, HAN En-hou, KE Wei. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY MONITORING ON MILD STEEL Q235 IN SIMULATED INDUSTRIAL ATMOSPHERIC CORROSION ENVIORNMENT[J]. 金属学报, 2014, 50(1): 57-63.
[12] LI Yongkui, CHEN Jundan, LU Shanping. RESIDUAL STRESS IN THE WHEEL OF 42CrMo STEEL DURING QUENCHING[J]. 金属学报, 2014, 50(1): 121-128.
[13] LI Zhengyang, ZHU Mingfang, DAI Ting. MODELING OF MICROPOROSITY FORMATION IN AN Al-7%Si ALLOY[J]. 金属学报, 2013, 49(9): 1032-1040.
[14] TAN Xianghu,SHAN Jiguo,REN Jialie. EFFECTS OF Cr PLATING LAYER ON SHEAR STRENGTH AND INTERFACE BONDING CHARACTERISTICS OF MILD STEEL/CFRP JOINT BY LASER HEATING[J]. 金属学报, 2013, 49(6): 751-756.
[15] WAN Qian, ZHAO Haidong,ZOU Chun. THREE-DIMENSIONAL CHARACTERIZATION ANDDISTRIBUTION OF MICROPORES IN ALUMINUMALLOY HIGH PRESSURE DIE CASTINGS[J]. 金属学报, 2013, 49(3): 284-290.
No Suggested Reading articles found!